找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in ; Qi Lü,Xu Zhang Book 2014 The Author(

[復制鏈接]
樓主: 貪求
11#
發(fā)表于 2025-3-23 12:46:23 | 只看該作者
Working methods: from theory into practice,In this chapter, we prove a uniqueness result for transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) and a well-posedness result for transposition solutions to this equation for the special case that both the final datum and the nonhomogeneous term are valued in the Hilbert space of Hilbert-Schmidt operators.
12#
發(fā)表于 2025-3-23 14:48:20 | 只看該作者
https://doi.org/10.1007/978-3-031-17084-3In this chapter, we study the well-posedness for the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term, in the sense of relaxed transposition solution.
13#
發(fā)表于 2025-3-23 18:24:35 | 只看該作者
Integration into the community,In this chapter, we derive some regularity properties for the relaxed transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term. These properties will play key roles in the proof of our general Pontryagin-type stochastic maximum principle, presented in Chap. 9.
14#
發(fā)表于 2025-3-24 01:14:30 | 只看該作者
Community Pest Management in PracticeThe purpose of this chapter is to show a necessary condition for stochastic optimal controls when the control domain is a convex subset of some Hilbert space.
15#
發(fā)表于 2025-3-24 06:07:21 | 只看該作者
16#
發(fā)表于 2025-3-24 08:13:52 | 只看該作者
Preliminaries,In this chapter, we present nine lemmas that will be used in the rest of this book. The first one is the classical Burkholder-Davis-Gundy inequality in infinite dimensions, while the rest are new technical results.
17#
發(fā)表于 2025-3-24 13:35:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:05:39 | 只看該作者
19#
發(fā)表于 2025-3-24 21:48:13 | 只看該作者
Well-Posedness of the Operator-Valued BSEEs in the General Case,In this chapter, we study the well-posedness for the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term, in the sense of relaxed transposition solution.
20#
發(fā)表于 2025-3-25 01:40:46 | 只看該作者
Some Properties of the Relaxed Transposition Solutions to the Operator-Valued BSEEs,In this chapter, we derive some regularity properties for the relaxed transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term. These properties will play key roles in the proof of our general Pontryagin-type stochastic maximum principle, presented in Chap. 9.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 05:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贵州省| 老河口市| 如皋市| 安溪县| 娄烦县| 赤城县| 河东区| 太康县| 新源县| 融水| 措美县| 铜陵市| 萨嘎县| 朝阳县| 锦屏县| 黄陵县| 连云港市| 奇台县| 定西市| 依兰县| 府谷县| 怀来县| 社会| 商城县| 宝兴县| 甘孜| 抚松县| 新宁县| 汝阳县| 长兴县| 寿宁县| 扶绥县| 冕宁县| 崇阳县| 庆安县| 府谷县| 昌宁县| 太康县| 临猗县| 武胜县| 搜索|