找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in ; Qi Lü,Xu Zhang Book 2014 The Author(

[復(fù)制鏈接]
樓主: 貪求
11#
發(fā)表于 2025-3-23 12:46:23 | 只看該作者
Working methods: from theory into practice,In this chapter, we prove a uniqueness result for transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) and a well-posedness result for transposition solutions to this equation for the special case that both the final datum and the nonhomogeneous term are valued in the Hilbert space of Hilbert-Schmidt operators.
12#
發(fā)表于 2025-3-23 14:48:20 | 只看該作者
https://doi.org/10.1007/978-3-031-17084-3In this chapter, we study the well-posedness for the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term, in the sense of relaxed transposition solution.
13#
發(fā)表于 2025-3-23 18:24:35 | 只看該作者
Integration into the community,In this chapter, we derive some regularity properties for the relaxed transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term. These properties will play key roles in the proof of our general Pontryagin-type stochastic maximum principle, presented in Chap. 9.
14#
發(fā)表于 2025-3-24 01:14:30 | 只看該作者
Community Pest Management in PracticeThe purpose of this chapter is to show a necessary condition for stochastic optimal controls when the control domain is a convex subset of some Hilbert space.
15#
發(fā)表于 2025-3-24 06:07:21 | 只看該作者
16#
發(fā)表于 2025-3-24 08:13:52 | 只看該作者
Preliminaries,In this chapter, we present nine lemmas that will be used in the rest of this book. The first one is the classical Burkholder-Davis-Gundy inequality in infinite dimensions, while the rest are new technical results.
17#
發(fā)表于 2025-3-24 13:35:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:05:39 | 只看該作者
19#
發(fā)表于 2025-3-24 21:48:13 | 只看該作者
Well-Posedness of the Operator-Valued BSEEs in the General Case,In this chapter, we study the well-posedness for the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term, in the sense of relaxed transposition solution.
20#
發(fā)表于 2025-3-25 01:40:46 | 只看該作者
Some Properties of the Relaxed Transposition Solutions to the Operator-Valued BSEEs,In this chapter, we derive some regularity properties for the relaxed transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term. These properties will play key roles in the proof of our general Pontryagin-type stochastic maximum principle, presented in Chap. 9.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
亳州市| 怀来县| 金湖县| 威信县| 襄垣县| 女性| 高陵县| 台山市| 电白县| 连山| 丹棱县| 界首市| 大城县| 金堂县| 新邵县| 容城县| 通江县| 山阴县| 武鸣县| 南郑县| 镇赉县| 南岸区| 简阳市| 大竹县| 临洮县| 营口市| 固始县| 辰溪县| 永兴县| 玛沁县| 长阳| 澳门| 阳西县| 会泽县| 凉山| 二手房| 怀远县| 山东省| 蕲春县| 安乡县| 上栗县|