找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gems of Theoretical Computer Science; Uwe Sch?ning,Randall Pruim Book 1998 Springer-Verlag Berlin Heidelberg 1998 Kolmogorov complexity.Re

[復(fù)制鏈接]
樓主: 巡洋
31#
發(fā)表于 2025-3-27 00:51:58 | 只看該作者
https://doi.org/10.1007/978-1-4757-2696-1In their pioneering work of 1984, Furst, Saxe and Sipser introduced the method of “random restrictions” to achieve lower bounds for circuits: The parity function cannot be computed by an AND-OR circuit of polynomial size and constant depth.
32#
發(fā)表于 2025-3-27 04:53:00 | 只看該作者
The Meaning of the Constitutive Equation,The lower bound theory for circuits received an additional boost through algebraic techniques (in combination with probabilistic techniques) that go back to Razborov and Smolensky.
33#
發(fā)表于 2025-3-27 07:43:26 | 只看該作者
34#
發(fā)表于 2025-3-27 12:46:47 | 只看該作者
https://doi.org/10.1007/978-1-4757-2257-4If all NP-complete languages were P-isomorphic to each other, then it would follow that P ≠ NP. This “Isomorphism Conjecture” has been the starting point of much research, in particular into sparse sets and their potential to be NP-complete.
35#
發(fā)表于 2025-3-27 15:27:02 | 只看該作者
36#
發(fā)表于 2025-3-27 21:37:40 | 只看該作者
https://doi.org/10.1007/978-1-4471-3774-0The following results suggest that the Graph Isomorphism problem is not NP-complete, since, unlike the known NP-complete problems, Graph Isomorphism belongs to a class that can be defined by means of the BPoperator, an operator that has proven useful in many other applications as well.
37#
發(fā)表于 2025-3-28 01:08:37 | 只看該作者
38#
發(fā)表于 2025-3-28 02:48:15 | 只看該作者
39#
發(fā)表于 2025-3-28 06:31:16 | 只看該作者
,Hilbert’s Tenth Problem,Hilbert’s Tenth Problem goes back to the year 1900 and concerns a fundamental question, namely whether there is an algorithmic method for solving Diophantine equations. The ultimate solution to this problem was not achieved until 1970. The “solution” wets, however, a negative one: there is no such algorithm.
40#
發(fā)表于 2025-3-28 11:41:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵义县| 仲巴县| 阿拉尔市| 德阳市| 黔江区| 通城县| 偃师市| 仲巴县| 定南县| 龙江县| 河间市| 玉树县| 栾川县| 绵阳市| 六安市| 玛多县| 米泉市| 舞阳县| 冀州市| 甘洛县| 都江堰市| 旌德县| 曲水县| 江西省| 辰溪县| 保山市| 商洛市| 北票市| 南溪县| 湖北省| 义马市| 华池县| 姜堰市| 确山县| 扬中市| 嵊泗县| 依兰县| 婺源县| 漾濞| 平安县| 班戈县|