找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian Random Functions; M. A. Lifshits Book 1995 Springer Science+Business Media Dordrecht 1995 Gaussian distribution.Gaussian measure.

[復(fù)制鏈接]
樓主: 全體
51#
發(fā)表于 2025-3-30 09:01:09 | 只看該作者
Majorizing Measures,have different forms (see Theorems 14.1 and 14.5), and a certain gap may exist between these bounds. In particular, this is a reason of that it is impossible to give necessary and sufficient conditions for the boundedness (or continuity) of a Gaussian random function in terms of the entropy. In the
52#
發(fā)表于 2025-3-30 15:11:43 | 只看該作者
53#
發(fā)表于 2025-3-30 20:20:46 | 只看該作者
54#
發(fā)表于 2025-3-30 23:44:44 | 只看該作者
Several Open Problems,., ρ), and moreover, one can construct an indicator model for this function. The converse is obviously true: If both a Brownian function . an indicator model for this function exist, then (., ρ) may be isometrically embedded into L.. However, a more natural question is the following: Does the existe
55#
發(fā)表于 2025-3-31 01:58:08 | 只看該作者
Book 1995t all conceivable nice properties that a distribution may ever have: symmetry, stability, indecomposability, a regular tail behavior, etc. Gaussian measures (the distributions of Gaussian random functions), as infinite-dimensional analogues of tht< classical normal distribution, go to work as such e
56#
發(fā)表于 2025-3-31 06:36:54 | 只看該作者
57#
發(fā)表于 2025-3-31 11:56:41 | 只看該作者
58#
發(fā)表于 2025-3-31 13:38:23 | 只看該作者
59#
發(fā)表于 2025-3-31 18:36:00 | 只看該作者
60#
發(fā)表于 2025-4-1 01:43:59 | 只看該作者
https://doi.org/10.1007/978-3-030-05099-3efined on an . parametric set, we shall interpret the regularity as boundedness of the sample functions, or the continuity of sample functions with respect to the intrinsic semimetric. We shall also mention some special features of the regularity of ., such as boundedness of the variation and differentiability.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
依安县| 香河县| 沙河市| 潮州市| 阳泉市| 南宫市| 静海县| 汝州市| 扎兰屯市| 江华| 寻乌县| 府谷县| 达拉特旗| 若尔盖县| 吉安县| 太仓市| 任丘市| 南郑县| 大港区| 高邑县| 临西县| 库车县| 聂拉木县| 前郭尔| 甘孜县| 鲁山县| 扎赉特旗| 永登县| 穆棱市| 浦东新区| 云南省| 海盐县| 宁陵县| 郸城县| 舞钢市| 东辽县| 静海县| 武清区| 高淳县| 临西县| 南木林县|