找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian Random Functions; M. A. Lifshits Book 1995 Springer Science+Business Media Dordrecht 1995 Gaussian distribution.Gaussian measure.

[復制鏈接]
樓主: 全體
21#
發(fā)表于 2025-3-25 23:55:22 | 只看該作者
22#
發(fā)表于 2025-3-26 01:38:17 | 只看該作者
23#
發(fā)表于 2025-3-26 06:52:15 | 只看該作者
24#
發(fā)表于 2025-3-26 11:16:26 | 只看該作者
25#
發(fā)表于 2025-3-26 13:20:42 | 只看該作者
Autoethnography in Language Educationhave different forms (see Theorems 14.1 and 14.5), and a certain gap may exist between these bounds. In particular, this is a reason of that it is impossible to give necessary and sufficient conditions for the boundedness (or continuity) of a Gaussian random function in terms of the entropy. In the
26#
發(fā)表于 2025-3-26 17:30:18 | 只看該作者
27#
發(fā)表于 2025-3-26 21:12:18 | 只看該作者
Michel Arock,Gilbert Chemla,Jean-Paul Chemlaur subjects in Section 12. We established that this asymptotics had a unified fashion on the logarithmic level, and this fashion did not depend on the form of A and was controlled by constants governed by the action functional.
28#
發(fā)表于 2025-3-27 02:01:15 | 只看該作者
,Schwei?- und Schwei?restspannungen,., ρ), and moreover, one can construct an indicator model for this function. The converse is obviously true: If both a Brownian function . an indicator model for this function exist, then (., ρ) may be isometrically embedded into L.. However, a more natural question is the following: Does the existe
29#
發(fā)表于 2025-3-27 05:36:33 | 只看該作者
30#
發(fā)表于 2025-3-27 09:29:30 | 只看該作者
Edward Blair,Kathleen Williamson ξ. If . ? ?., the term ‘.’ (or simply .) is used instead of the term ‘random function’; if . ? ?., . > 1, the expression ‘.’ is used. In these cases, the elements of . are interpreted as the time instants or space points, respectively. If . = ?, a random function ξ is called the ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
郑州市| 济阳县| 门源| 长海县| 六枝特区| 林甸县| 文化| 禄丰县| 襄城县| 陵川县| 水城县| 清水河县| 仁化县| 忻州市| 碌曲县| 武鸣县| 翁牛特旗| 孟州市| 班玛县| 苍南县| 且末县| 富宁县| 平阴县| 防城港市| 辽阳市| 澄迈县| 定日县| 运城市| 洪江市| 安西县| 如皋市| 洪湖市| 古浪县| 河南省| 漳平市| 贵阳市| 龙州县| 博乐市| 磴口县| 宣汉县| 西安市|