找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory of p-Extensions; Helmut Koch Book 2002 Springer-Verlag Berlin Heidelberg 2002 Cohomology.Prime.algebra.chomology of groups.c

[復(fù)制鏈接]
樓主: firearm
31#
發(fā)表于 2025-3-26 21:33:28 | 只看該作者
Introduction,Once the framework of Galois theory has been completed with the main theorem, the principal problem of the theory is the question: what are the possible normal extensions of a fixed base field . with given Galois group .. This problem is called the ..
32#
發(fā)表于 2025-3-27 04:20:54 | 只看該作者
33#
發(fā)表于 2025-3-27 08:54:08 | 只看該作者
Galois Theory of Infinite Algebraic Extensions,A Galois theory of a category R is a contravariant functor of R into a “simpler” category R′, where certain properties of the objects and morphisms of R are reflected in R′.
34#
發(fā)表于 2025-3-27 11:38:38 | 只看該作者
35#
發(fā)表于 2025-3-27 14:23:30 | 只看該作者
36#
發(fā)表于 2025-3-27 19:47:32 | 只看該作者
37#
發(fā)表于 2025-3-28 01:36:41 | 只看該作者
Results from Algebraic Number Theory,In this chapter we formulate the theorems from class field theory for finite extensions that we shall need in the following, and we will transfer them to infinite extension as far as is necessary.
38#
發(fā)表于 2025-3-28 05:57:34 | 只看該作者
The Maximal ,-Extension,The maximal .-extension . of a field . is the compositum (inside a fixed algebraic closure of .) of all finite .-extensions of ., i.e., of all normal (separable) extensions of . with .-power degree.
39#
發(fā)表于 2025-3-28 07:51:43 | 只看該作者
Local Fields of Finite Type,In this chapter we study the maximal .-extension more closely in the case where . is a local field of finite type. Let T denote the prime ideal of . and χ(T) the characteristic of the residue class field of ..
40#
發(fā)表于 2025-3-28 11:58:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福泉市| 米脂县| 韶关市| 昌图县| 沅陵县| 西城区| 元江| 故城县| 固原市| 沈丘县| 昌乐县| 罗平县| 广昌县| 千阳县| 崇仁县| 陵川县| 丰都县| 通许县| 翁牛特旗| 察隅县| 沈丘县| 丹凤县| 含山县| 阿荣旗| 平邑县| 古交市| 平顶山市| 武夷山市| 尖扎县| 盐山县| 昭平县| 阿鲁科尔沁旗| 玛多县| 静安区| 重庆市| 昌图县| 武城县| 南江县| 穆棱市| 高唐县| 三门县|