找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: GPU Ray Tracing in Non-Euclidean Spaces; Tiago Novello,Vinícius da Silva,Luiz Velho Book 2022 Springer Nature Switzerland AG 2022

[復(fù)制鏈接]
樓主: 戰(zhàn)神
11#
發(fā)表于 2025-3-23 11:03:06 | 只看該作者
Form: History of One Term and Five Concepts,ends on the . which does not directly come from the light sources (.), but from reflections on other surfaces at the scene. Computing . and . are important tasks for computing the global illumination of a given scene.
12#
發(fā)表于 2025-3-23 16:57:18 | 只看該作者
978-3-031-79200-7Springer Nature Switzerland AG 2022
13#
發(fā)表于 2025-3-23 19:30:54 | 只看該作者
GPU Ray Tracing in Non-Euclidean Spaces978-3-031-79212-0Series ISSN 2469-4215 Series E-ISSN 2469-4223
14#
發(fā)表于 2025-3-24 01:44:26 | 只看該作者
15#
發(fā)表于 2025-3-24 06:15:58 | 只看該作者
M. Cary D.Litt.,H. H. Scullard F.B.A.This chapter explores the Riemannian ray tracing (introduced in Chapter 5) in non-isotropic geometries to render inside views of the most non-trivial Thurston geometries: Nil, Sol, and .. These Riemannian manifolds are fundamental in the Geometrization conjecture as we saw in Section 2.6.
16#
發(fā)表于 2025-3-24 09:53:02 | 只看該作者
Classical non-Euclidean Spaces,We present some expressive output images from our implementation (given in Chapter 5) of the algorithm in GPU using RTX. This chapter consider examples of 3-manifolds and orbifolds modeled by the classical geometries. For visualizations using classical rasterization techniques, see Weeks [Wee02].
17#
發(fā)表于 2025-3-24 11:11:33 | 只看該作者
18#
發(fā)表于 2025-3-24 18:40:19 | 只看該作者
https://doi.org/10.1057/978-1-137-56595-2sed of ambient three-dimensional space, 3D shapes placed in this ambient space, and a viewpoint, among other parameters. The output is a 2D view. In that sense, the rendering process transforms geometric 3D information into visual 2D information.
19#
發(fā)表于 2025-3-24 19:59:02 | 只看該作者
20#
發(fā)表于 2025-3-25 00:46:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀远县| 白城市| 清丰县| 根河市| 木兰县| 溧水县| 双柏县| 乌鲁木齐县| 锦屏县| 赤城县| 岳池县| 福清市| 普定县| 资兴市| 特克斯县| 兴城市| 沅陵县| 长葛市| 台山市| 麻城市| 奇台县| 邳州市| 长汀县| 远安县| 三原县| 门源| 苗栗市| 喜德县| 中方县| 永州市| 土默特右旗| 浑源县| 湄潭县| 故城县| 宣城市| 祁阳县| 阳信县| 吉首市| 长泰县| 全椒县| 惠来县|