找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Concavity in Fuzzy Optimization and Decision Analysis; Jaroslav Ramík,Milan Vlach Book 2002 Springer Science+Business Media Ne

[復制鏈接]
樓主: Optician
11#
發(fā)表于 2025-3-23 10:03:27 | 只看該作者
12#
發(fā)表于 2025-3-23 14:53:02 | 只看該作者
13#
發(fā)表于 2025-3-23 18:21:05 | 只看該作者
Kommunikation zwischen Mensch und Maschine,We assume that the reader is familiar with standard set theoretic concepts, introductory elements of linear algebra, and basic material from calculus. To avoid misunderstandings and for reader’s convenience, we review some basic concepts, results and notations.
14#
發(fā)表于 2025-3-24 00:37:19 | 只看該作者
15#
發(fā)表于 2025-3-24 05:42:22 | 只看該作者
https://doi.org/10.1007/978-3-662-49429-5Most frequent mathematical programming problems are linear programming problems. In this chapter we are concerned with fuzzy linear programming problem related to linear programming problems in the following form.
16#
發(fā)表于 2025-3-24 10:34:14 | 只看該作者
17#
發(fā)表于 2025-3-24 12:34:35 | 只看該作者
Generalized Concave FunctionsThe notion of concavity of real-valued functions of real variables and its various generalizations have found many applications in economics and engineering. We refer to [3] for a detailed treatment of concavity and some of its generalizations.
18#
發(fā)表于 2025-3-24 17:38:44 | 只看該作者
Fuzzy Linear ProgrammingMost frequent mathematical programming problems are linear programming problems. In this chapter we are concerned with fuzzy linear programming problem related to linear programming problems in the following form.
19#
發(fā)表于 2025-3-24 21:32:25 | 只看該作者
20#
發(fā)表于 2025-3-25 02:41:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
嘉善县| 白水县| 博兴县| 渭南市| 鹿邑县| 宜丰县| 卢龙县| 台中市| 德令哈市| 渝北区| 郎溪县| 巴楚县| 卓尼县| 汤阴县| 随州市| 尚志市| 新绛县| 商洛市| 安仁县| 白城市| 景德镇市| 富锦市| 林州市| 广元市| 顺平县| 永康市| 荣成市| 台中县| 玉龙| 沙河市| 汪清县| 河间市| 宜兴市| 怀仁县| 大城县| 南开区| 朝阳县| 岚皋县| 疏勒县| 普兰县| 永寿县|