找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Fractional Fields and Applications; Serge Cohen,Jacques Istas Book 2013 Springer-Verlag Berlin Heidelberg 2013 Lévy fields.fractional Brow

[復(fù)制鏈接]
查看: 39695|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:09:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Fractional Fields and Applications
編輯Serge Cohen,Jacques Istas
視頻videohttp://file.papertrans.cn/348/347402/347402.mp4
概述Stated and proved properties of fractional Brownian fields.Efficient statistical inference of fractional parameters.Efficient simulation algorithm of fractional fields
叢書名稱Mathématiques et Applications
圖書封面Titlebook: Fractional Fields and Applications;  Serge Cohen,Jacques Istas Book 2013 Springer-Verlag Berlin Heidelberg 2013 Lévy fields.fractional Brow
描述This book focuses mainly on fractional Brownian fields and their extensions. It has been used to teach graduate students at Grenoble and Toulouse‘s Universities. It is as self-contained as possible and contains numerous exercises, with solutions in an appendix. After a foreword by Stéphane Jaffard, a long first chapter is devoted to classical results from stochastic fields and fractal analysis. A central notion throughout this book is self-similarity, which is dealt with in a second chapter with a particular emphasis on the celebrated Gaussian self-similar fields, called fractional Brownian fields after Mandelbrot and Van Ness‘s seminal paper. Fundamental properties of fractional Brownian fields are then stated and proved. The second central notion of this book is the so-called local asymptotic self-similarity (in short lass), which is a local version of self-similarity, defined in the third chapter. A lengthy study is devoted to lass fields with finite variance. Among these lass fields, we find both Gaussian fields and non-Gaussian fields, called Lévy fields. The Lévy fields can be viewed as bridges between fractional Brownian fields and stable self-similar fields. A further key i
出版日期Book 2013
關(guān)鍵詞Lévy fields; fractional Brownian fields; self-similarity; simulation; statistics; complexity
版次1
doihttps://doi.org/10.1007/978-3-642-36739-7
isbn_softcover978-3-642-36738-0
isbn_ebook978-3-642-36739-7Series ISSN 1154-483X Series E-ISSN 2198-3275
issn_series 1154-483X
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Fractional Fields and Applications影響因子(影響力)




書目名稱Fractional Fields and Applications影響因子(影響力)學(xué)科排名




書目名稱Fractional Fields and Applications網(wǎng)絡(luò)公開度




書目名稱Fractional Fields and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Fractional Fields and Applications被引頻次




書目名稱Fractional Fields and Applications被引頻次學(xué)科排名




書目名稱Fractional Fields and Applications年度引用




書目名稱Fractional Fields and Applications年度引用學(xué)科排名




書目名稱Fractional Fields and Applications讀者反饋




書目名稱Fractional Fields and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:19:28 | 只看該作者
第147402主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:24:38 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:22:12 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:11:53 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:59:57 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:32:23 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:15:49 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:02:15 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:55:14 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九台市| 广西| 安福县| 富平县| 于都县| 攀枝花市| 酒泉市| 金塔县| 项城市| 湖南省| 霍山县| 深泽县| 永福县| 太康县| 商水县| 利川市| 隆尧县| 会泽县| 卢龙县| 海丰县| 会同县| 青浦区| 肃宁县| 洮南市| 蛟河市| 石景山区| 清新县| 东乌珠穆沁旗| 新兴县| 荆门市| 聂荣县| 台北县| 天台县| 抚州市| 嘉定区| 贵阳市| 凤庆县| 连江县| 荥经县| 梅州市| 哈尔滨市|