找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Food Gels; Peter Harris Book 1990 Elsevier Science Publishers Ltd 1990 Gelatine.biopolymer.food.heat.influence.information.ion.polymer.pol

[復(fù)制鏈接]
樓主: foresight
41#
發(fā)表于 2025-3-28 14:48:16 | 只看該作者
8樓
42#
發(fā)表于 2025-3-28 21:37:54 | 只看該作者
9樓
43#
發(fā)表于 2025-3-29 00:22:53 | 只看該作者
9樓
44#
發(fā)表于 2025-3-29 05:25:44 | 只看該作者
45#
發(fā)表于 2025-3-29 10:02:34 | 只看該作者
46#
發(fā)表于 2025-3-29 11:47:01 | 只看該作者
47#
發(fā)表于 2025-3-29 15:39:18 | 只看該作者
A Combination of Explicit and Deductive Knowledge with Branching Time: Completeness and Decidability. We show the resulting system enjoys the finite model property, decidability and is finitely axiomatisable. It is further shown that the expressivity of the resulting system enables us to represent a non-standard notion of deductive knowledge which seems promising for applications.
48#
發(fā)表于 2025-3-29 23:29:53 | 只看該作者
Chao Huangels of complexity, dynamism, and to uncertainty of the global environment. Traditional ways of designing businesses are more suited to evolutionary change, therefore the definition (or re-definition) of a business should take into account novel approaches from the start, i.e. the conception of the n
49#
發(fā)表于 2025-3-29 23:52:37 | 只看該作者
Preliminary Results: The Gaussian Measure and Hermite Polynomials,ls in . which is crucial in Chapter . for studying the associated covering lemmas for that measure. For completeness, we consider Hermite polynomials, which are orthogonal polynomials, with respect to the Gaussian measure, and discuss in detail most of their properties. The interested reader will fi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜昌市| 常德市| 晋州市| 正镶白旗| 芦山县| 五大连池市| 汨罗市| 遵义市| 吉水县| 芦溪县| 黑龙江省| 鄂托克旗| 泰来县| 噶尔县| 太仓市| 合山市| 本溪市| 崇信县| 巴彦县| 定日县| 广昌县| 旌德县| 鄂托克旗| 崇仁县| 宿迁市| 满洲里市| 嫩江县| 余江县| 定南县| 肃南| 洮南市| 温宿县| 宿州市| 庆阳市| 柯坪县| 邢台市| 郑州市| 邛崃市| 开鲁县| 南通市| 榆社县|