找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems; FVCA 8, Lille, Franc Clément Cancès,Pascal Omne

[復制鏈接]
查看: 9279|回復: 64
樓主
發(fā)表于 2025-3-21 17:31:59 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
副標題FVCA 8, Lille, Franc
編輯Clément Cancès,Pascal Omnes
視頻videohttp://file.papertrans.cn/344/343665/343665.mp4
概述Offers a comprehensive overview of the state of the art of finite volume applications.Covers both theoretical and applied aspects.Includes contributions from leading researchers in the field.Includes
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems; FVCA 8, Lille, Franc Clément Cancès,Pascal Omne
描述.This book is the second volume of proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017). It includes reviewed contributions reporting successful applications in the fields of fluid dynamics, computational geosciences, structural analysis, nuclear physics, semiconductor theory and other topics..The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete l.evel. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications..The book is useful for researchers, PhD and
出版日期Conference proceedings 2017
關鍵詞65-06, 65Mxx, 65Nxx, 76xx, 78xx,85-08, 86-08, 92-; finite volume schemes; conservation and balance law
版次1
doihttps://doi.org/10.1007/978-3-319-57394-6
isbn_softcover978-3-319-86152-4
isbn_ebook978-3-319-57394-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer International Publishing AG, part of Springer Nature 2017
The information of publication is updating

書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems影響因子(影響力)




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems影響因子(影響力)學科排名




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems網(wǎng)絡公開度




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems網(wǎng)絡公開度學科排名




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems被引頻次




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems被引頻次學科排名




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems年度引用




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems年度引用學科排名




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems讀者反饋




書目名稱Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:37 | 只看該作者
第143665主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:40:11 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:55:30 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:16:34 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:42:58 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:43:17 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:40:05 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:42:15 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:22:33 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 22:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宁都县| 原阳县| 湖南省| 周宁县| 巴里| 九寨沟县| 长丰县| 新营市| 策勒县| 台中县| 江阴市| 抚远县| 阿拉善右旗| 温宿县| 江达县| 濉溪县| 台安县| 巴彦县| 奇台县| 聂拉木县| 弥渡县| 东明县| 高阳县| 阿瓦提县| 平塘县| 文安县| 新丰县| 阿克陶县| 日土县| 临城县| 义马市| 宜兰市| 会同县| 阜新| 浮梁县| 天门市| 沂源县| 托克托县| 隆回县| 满洲里市| 广元市|