找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Finite Fields; Normal Bases and Com Dirk Hachenberger Book 1997 Springer Science+Business Media New York 1997 Arithmetic.addition.algebra.a

[復(fù)制鏈接]
查看: 43544|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:17:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Finite Fields
副標(biāo)題Normal Bases and Com
編輯Dirk Hachenberger
視頻videohttp://file.papertrans.cn/344/343613/343613.mp4
叢書(shū)名稱(chēng)The Springer International Series in Engineering and Computer Science
圖書(shū)封面Titlebook: Finite Fields; Normal Bases and Com Dirk Hachenberger Book 1997 Springer Science+Business Media New York 1997 Arithmetic.addition.algebra.a
描述Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed- ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski‘s book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo- rem, a classical result from field theory, stating that in every finite dimen- sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor- mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very usef
出版日期Book 1997
關(guān)鍵詞Arithmetic; addition; algebra; algorithms; field theory
版次1
doihttps://doi.org/10.1007/978-1-4615-6269-6
isbn_softcover978-1-4613-7877-8
isbn_ebook978-1-4615-6269-6Series ISSN 0893-3405
issn_series 0893-3405
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書(shū)目名稱(chēng)Finite Fields影響因子(影響力)




書(shū)目名稱(chēng)Finite Fields影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Finite Fields網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Finite Fields網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Finite Fields被引頻次




書(shū)目名稱(chēng)Finite Fields被引頻次學(xué)科排名




書(shū)目名稱(chēng)Finite Fields年度引用




書(shū)目名稱(chēng)Finite Fields年度引用學(xué)科排名




書(shū)目名稱(chēng)Finite Fields讀者反饋




書(shū)目名稱(chēng)Finite Fields讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:54:54 | 只看該作者
第143613主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:49:27 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:51:52 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:42:47 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:18:09 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:06:44 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:23:56 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:36:58 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:55:04 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武乡县| 临汾市| 武山县| 宜兰市| 县级市| 安阳市| 和静县| 万盛区| 湟中县| 竹溪县| 灌云县| 阿拉善右旗| 忻城县| 东城区| 修文县| 道真| 南京市| 鄂托克前旗| 西乌珠穆沁旗| 土默特左旗| 林甸县| 文水县| 宜城市| 兴仁县| 巴青县| 湖州市| 泰安市| 武陟县| 炎陵县| 旅游| 方正县| 秦安县| 金川县| 巧家县| 韩城市| 日喀则市| 榆社县| 平泉县| 襄城县| 井陉县| 鹤庆县|