找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Federated Learning Systems; Towards Next-Generat Muhammad Habib ur Rehman,Mohamed Medhat Gaber Book 2021 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 19429|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:28:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Federated Learning Systems
副標(biāo)題Towards Next-Generat
編輯Muhammad Habib ur Rehman,Mohamed Medhat Gaber
視頻videohttp://file.papertrans.cn/342/341595/341595.mp4
概述Presents advances in federated learning.Shows how federated learning can transform next-generation artificial intelligence applications.Proposes solutions to address key federated learning challenges
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Federated Learning Systems; Towards Next-Generat Muhammad Habib ur Rehman,Mohamed Medhat Gaber Book 2021 The Editor(s) (if applicable) and
描述This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data..
出版日期Book 2021
關(guān)鍵詞Deep Learning; Differential Privacy; Distributed Machine Learning; Federated Learning; Fine-grained Fede
版次1
doihttps://doi.org/10.1007/978-3-030-70604-3
isbn_softcover978-3-030-70606-7
isbn_ebook978-3-030-70604-3Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Federated Learning Systems影響因子(影響力)




書目名稱Federated Learning Systems影響因子(影響力)學(xué)科排名




書目名稱Federated Learning Systems網(wǎng)絡(luò)公開度




書目名稱Federated Learning Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Federated Learning Systems被引頻次




書目名稱Federated Learning Systems被引頻次學(xué)科排名




書目名稱Federated Learning Systems年度引用




書目名稱Federated Learning Systems年度引用學(xué)科排名




書目名稱Federated Learning Systems讀者反饋




書目名稱Federated Learning Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:43:50 | 只看該作者
第141595主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:43:14 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:10:27 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:30:39 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:44:44 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:28:14 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:41:56 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:07:23 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:43:23 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 18:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白水县| 青州市| 冷水江市| 扶沟县| 汝州市| 肥城市| 南安市| 德化县| 确山县| 怀柔区| 古田县| 辽阳县| 大城县| 资中县| 乐陵市| 乌兰察布市| 北安市| 松阳县| 维西| 平凉市| 临江市| 汉中市| 唐海县| 滦南县| 拉萨市| 含山县| 墨竹工卡县| 兴业县| 延寿县| 大荔县| 抚宁县| 浦东新区| 塔河县| 洛南县| 浦城县| 麟游县| 东阳市| 赣州市| 子洲县| 方城县| 瑞金市|