找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Problems in Riemannian Geometry; Bubbles, Scans and G Paul Baird,Ali Fardoun,Ahmad Soufi Conference proceedings 2004 Springer B

[復(fù)制鏈接]
樓主: 倒鉤
31#
發(fā)表于 2025-3-26 22:15:27 | 只看該作者
32#
發(fā)表于 2025-3-27 03:12:34 | 只看該作者
33#
發(fā)表于 2025-3-27 08:05:38 | 只看該作者
Evolution by Curvature of Networks of Curves in the Planehese networks of curves is the simplest example of curvature flow for sets which are “essentially” non regular..In this paper, we introduce the problem and we present some results and open problems about existence, uniqueness and, in particular, the global regularity of the flow.
34#
發(fā)表于 2025-3-27 10:44:42 | 只看該作者
35#
發(fā)表于 2025-3-27 15:52:29 | 只看該作者
Application of Scans and Fractional Power Integrandsere first introduced in the work [HR1] of Tristan Rivière and the second author to adequately describe certain bubbling phenomena. There, the behaviour of certain .. weakly convergent sequences of smooth maps from four-dimensional domains into .. led to the consideration of a necessarily infinite ma
36#
發(fā)表于 2025-3-27 18:06:35 | 只看該作者
Bubbling of Almost-harmonic Maps between 2-spheres at Points of Zero Energy Densitythe domain at which the energy density of the body map is zero. We also see that this translates into different behaviour for the harmonic map flow. In [11] we obtained results, assuming nonzero bubble point density for certain bubbles, forcing the harmonic map flow to converge uniformly and exponen
37#
發(fā)表于 2025-3-27 22:27:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:16:51 | 只看該作者
39#
發(fā)表于 2025-3-28 06:33:18 | 只看該作者
40#
發(fā)表于 2025-3-28 12:34:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌乐县| 邛崃市| 邵武市| 台南市| 南城县| 大化| 苗栗市| 临沧市| 资源县| 柏乡县| 荥阳市| 大同县| 石屏县| 东莞市| 迁安市| 开江县| 舟山市| 曲周县| 甘孜县| 五大连池市| 康定县| 神木县| 磐石市| 美姑县| 通化市| 闸北区| 陈巴尔虎旗| 新竹市| 区。| 温州市| 沙湾县| 南京市| 绵竹市| 大同县| 巴彦县| 旌德县| 万盛区| 榕江县| 田林县| 玛沁县| 罗平县|