找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: eQTL Analysis; Methods and Protocol Xinghua Mindy Shi Book 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020 mining.g

[復(fù)制鏈接]
樓主: 貧血
21#
發(fā)表于 2025-3-25 03:46:36 | 只看該作者
22#
發(fā)表于 2025-3-25 08:22:11 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:35 | 只看該作者
24#
發(fā)表于 2025-3-25 16:55:22 | 只看該作者
25#
發(fā)表于 2025-3-25 23:04:52 | 只看該作者
Genome-Wide Composite Interval Mapping (GCIM) of Expressional Quantitative Trait Loci in Backcross Pgenetic model to develop genome-wide composite interval mapping (GCIM). This chapter covers the GCIM procedure in a backcross or doubled haploid populations. We describe the genetic model, parameter estimation, multi-locus genetic model, hypothesis tests, and software. Finally, some issues related to the GCIM method are discussed.
26#
發(fā)表于 2025-3-26 02:32:16 | 只看該作者
Expression Quantitative Trait Loci (eQTL) Analysis in Cancermorigenesis and development. Here we describe a detailed workflow for identifying eQTLs in cancer using existing packages and software. The key package is Matrix eQTL, which requires input data of genotypes, genes expression, and covariates. This pipeline can be easily applied in a related research field.
27#
發(fā)表于 2025-3-26 06:35:19 | 只看該作者
28#
發(fā)表于 2025-3-26 10:38:13 | 只看該作者
29#
發(fā)表于 2025-3-26 13:04:04 | 只看該作者
Statistical and Machine Learning Methods for eQTL Analysist distinct computational and statistical challenges that require advanced methodological development to overcome. In recent years, many statistical and machine learning methods for eQTL analysis have been developed with the ability to provide a more complex perspective towards the identification of
30#
發(fā)表于 2025-3-26 17:16:28 | 只看該作者
Sparse Regression Models for Unraveling Group and Individual Associations in eQTL Mapping. We perform extensive experiments on both simulated datasets and yeast datasets to demonstrate the effectiveness and efficiency of the proposed method. The results show that . can effectively detect both individual and group-wise signals and outperform the state-of-the-arts by a large margin. This
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 01:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄浪县| 安塞县| 凤庆县| 营口市| 莒南县| 西乌| 长沙县| 满城县| 西盟| 井研县| 南召县| 永清县| 曲沃县| 开鲁县| 镇远县| 长海县| 黄大仙区| 额济纳旗| 剑阁县| 伊金霍洛旗| 大丰市| 临邑县| 石嘴山市| 开江县| 黑河市| 锦屏县| 天水市| 济南市| 呈贡县| 辽宁省| 长海县| 丰镇市| 宁海县| 甘孜县| 沂南县| 桂林市| 津南区| 巴东县| 天镇县| 淮阳县| 三穗县|