找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extreme Value Theory for Time Series; Models with Power-La Thomas Mikosch,Olivier Wintenberger Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: 小客車(chē)
21#
發(fā)表于 2025-3-25 03:51:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:54:04 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:34 | 只看該作者
Regularly Varying Random Variables and VectorsIn this chapter we introduce regular variation for random variables, random vectors and their distributions. These notions are important for the study of . in Chap. .: there we define the regular variation of these processes via regular variation of their finite-dimensional distributions.
24#
發(fā)表于 2025-3-25 16:22:29 | 只看該作者
25#
發(fā)表于 2025-3-25 23:16:45 | 只看該作者
26#
發(fā)表于 2025-3-26 02:20:03 | 只看該作者
27#
發(fā)表于 2025-3-26 08:22:25 | 只看該作者
Self-Normalization, Sample Autocorrelations and the ExtremogramIn this chapter we first present some consequences of the .-stable limit theory developed in the previous chapter. In particular, we derive results about the joint convergence of sums and maxima of regularly varying stationary sequences, and distributional limits of . sums.
28#
發(fā)表于 2025-3-26 09:15:50 | 只看該作者
Introduction,h and nineteenth centuries, for example the law or large numbers, the central limit theorem with Gaussian limit distribution, and Poisson’s limit theorem. The limit law in the latter result was considered of little practical value, very much in contrast to the Gaussian law.
29#
發(fā)表于 2025-3-26 12:45:52 | 只看該作者
30#
發(fā)表于 2025-3-26 18:04:28 | 只看該作者
Examples of Regularly Varying Stationary Processes In this chapter we consider various important classes of time series models which have the regular variation property. We focus on the derivation of the corresponding tail measures and the spectral tail process. In the presence of serial dependence the tail measures and spectral tail processes ofte
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东宁县| 庄浪县| 迭部县| 昔阳县| 太和县| 石棉县| 招远市| 华安县| 科技| 云南省| 津市市| 齐河县| 闻喜县| 江门市| 九寨沟县| 忻州市| 海晏县| 宁河县| 广南县| 邵东县| 洪洞县| 太康县| 和顺县| 岳西县| 泸水县| 阿拉善右旗| 额敏县| 射阳县| 缙云县| 攀枝花市| 临猗县| 崇礼县| 辽源市| 临江市| 阜南县| 余干县| 阆中市| 城固县| 张家口市| 株洲县| 正阳县|