找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exploring Service Science; 10th International C Henriqueta Nóvoa,Monica Dr?goicea,Niklas Kühl Conference proceedings 2020 The Editor(s) (if

[復(fù)制鏈接]
樓主: 不服從
41#
發(fā)表于 2025-3-28 17:13:57 | 只看該作者
42#
發(fā)表于 2025-3-28 20:31:22 | 只看該作者
K. Tawada,M. Toyoda,Y. Imafuku,A. Yamada an Italian airline by applying a Principal Component Analysis (PCA) - Data Envelopment Analysis (DEA) model and we verify which airline routes are ranked among the most efficient ones by also including, in the proposed model, the presence of this undesirable output.
43#
發(fā)表于 2025-3-28 22:56:03 | 只看該作者
https://doi.org/10.1007/978-3-662-39761-9 (k-NN) and the Singular Value Decomposition (SVD), with Feed-Forward Neural Networks; given these assumptions, we finally demonstrated that a “Deep” Neural architecture could achieve better results in terms of “l(fā)oss” generated by the model, laying the foundations for a new, innovative paradigm in service recommendation science.
44#
發(fā)表于 2025-3-29 03:58:12 | 只看該作者
45#
發(fā)表于 2025-3-29 07:31:43 | 只看該作者
46#
發(fā)表于 2025-3-29 12:47:56 | 只看該作者
47#
發(fā)表于 2025-3-29 18:29:54 | 只看該作者
Quality and Efficiency Evaluation of Airlines Services an Italian airline by applying a Principal Component Analysis (PCA) - Data Envelopment Analysis (DEA) model and we verify which airline routes are ranked among the most efficient ones by also including, in the proposed model, the presence of this undesirable output.
48#
發(fā)表于 2025-3-29 20:59:39 | 只看該作者
Collaborative Recommendations with Deep Feed-Forward Networks: An Approach to Service Personalizatio (k-NN) and the Singular Value Decomposition (SVD), with Feed-Forward Neural Networks; given these assumptions, we finally demonstrated that a “Deep” Neural architecture could achieve better results in terms of “l(fā)oss” generated by the model, laying the foundations for a new, innovative paradigm in service recommendation science.
49#
發(fā)表于 2025-3-30 03:20:08 | 只看該作者
50#
發(fā)表于 2025-3-30 04:24:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
水富县| 古浪县| 汝州市| 凤庆县| 安龙县| 长海县| 木兰县| 英吉沙县| 宁化县| 古浪县| 柘荣县| 沈丘县| 县级市| 榆林市| 阿瓦提县| 墨竹工卡县| 海伦市| 梧州市| 突泉县| 贡嘎县| 汤原县| 公安县| 宁蒗| 太康县| 康定县| 峨边| 连云港市| 绍兴县| 新民市| 大关县| 成都市| 开平市| 栾川县| 渝北区| 米脂县| 民勤县| 湖南省| 长宁区| 黑龙江省| 兴义市| 广安市|