找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extrinsic Geometry of Foliations; Vladimir Rovenski,Pawe? Walczak Book 2021 Springer Nature Switzerland AG 2021 foliations.extrinsic geome

[復(fù)制鏈接]
樓主: 令人不愉快
21#
發(fā)表于 2025-3-25 06:51:39 | 只看該作者
An action research role for teachers, existence and characterization of foliations, whose leaves have a given geometric property, such as being totally geodesic, totally umbilical or minimal; (ii) prescribing the higher mean curvatures of the leaves of a foliation; (iii) minimizing functionals like volume and energy defined for tensor fields on a foliated manifold.
22#
發(fā)表于 2025-3-25 10:39:25 | 只看該作者
Rosa Mu?oz-Luna,Lidia Tailleferribed separately. In the codimension-one case, the only obstructions for a scalar function to be the mean curvature of a foliation arise from Stokes’ Theorem and a well known formula by H. Rummler relating mean curvature with the exterior derivative of the leaf volume form.
23#
發(fā)表于 2025-3-25 15:39:40 | 只看該作者
https://doi.org/10.1007/978-94-009-2177-1fold for different types of variations. Apart from varying among all metrics, we also deal with the case when the varying metric remains fixed along the distribution, and the complementary case when metric varies only along the distribution—preserving its orthogonal complement and the metric on it.
24#
發(fā)表于 2025-3-25 19:23:25 | 只看該作者
25#
發(fā)表于 2025-3-25 22:31:30 | 只看該作者
26#
發(fā)表于 2025-3-26 00:15:31 | 只看該作者
27#
發(fā)表于 2025-3-26 05:47:58 | 只看該作者
Variational Formulae,ntal question (similar to the question on existence of canonical metrics on a manifold) reads as: .? Our goal here is to examine the actions on a manifold for different types of variations. Apart from varying among all metrics, we also deal with the case when the varying metric remains fixed along t
28#
發(fā)表于 2025-3-26 11:56:38 | 只看該作者
29#
發(fā)表于 2025-3-26 14:43:23 | 只看該作者
Confounding of Effects in Rank-Based Conjoint-Analysis,cause of the scale requirements of new methods, such as hybrid models (e.g., Green 1984) or the standardized software package ACA (Green et al. 1991). Accordingly, this paper is intended for those who either (still) apply rank-based Conjoint-analyses or who want to compare their findings with those from past rank-based conjoint studies.
30#
發(fā)表于 2025-3-26 16:49:20 | 只看該作者
Integration of the Whole-Body Controller into a Higher-Level Framework,rm the tasks. A non-deterministic, AI-based planner can provide these data while not necessarily being hard-real-time-capable itself. In case of local minima on the control level, the planner is able to reschedule to find feasible, global solutions. Other modules such as the vision system or the speech recognition may also be triggered.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太康县| 卓资县| 垦利县| 额敏县| 阿拉善右旗| 共和县| 昌宁县| 左贡县| 台山市| 称多县| 黄大仙区| 晴隆县| 闻喜县| 廉江市| 连州市| 轮台县| 静安区| 武汉市| 桑日县| 安陆市| 万宁市| 琼海市| 平阴县| 华容县| 景德镇市| 林西县| 榆树市| 互助| 长阳| 莱西市| 故城县| 交口县| 敦煌市| 林口县| 元谋县| 普陀区| 五河县| 阿坝| 广元市| 镇平县| 文安县|