找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extrinsic Geometry of Foliations; Vladimir Rovenski,Pawe? Walczak Book 2021 Springer Nature Switzerland AG 2021 foliations.extrinsic geome

[復(fù)制鏈接]
查看: 46246|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:15:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Extrinsic Geometry of Foliations
編輯Vladimir Rovenski,Pawe? Walczak
視頻videohttp://file.papertrans.cn/321/320104/320104.mp4
概述Problems of prescribing the extrinsic geometry and curvature of foliations are central to the book.Presents the state of the art in geometric and analytical theory of foliations.Designed for newcomers
叢書名稱Progress in Mathematics
圖書封面Titlebook: Extrinsic Geometry of Foliations;  Vladimir Rovenski,Pawe? Walczak Book 2021 Springer Nature Switzerland AG 2021 foliations.extrinsic geome
描述.This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and ‘computable‘ Finsler metrics..The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors‘ life-long work in extrinsic geometry. ?It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications.? It may also be a useful supplement to
出版日期Book 2021
關(guān)鍵詞foliations; extrinsic geometry; Ricci flow; curvature; integral formulas; variation formulas; mean curvatu
版次1
doihttps://doi.org/10.1007/978-3-030-70067-6
isbn_softcover978-3-030-70069-0
isbn_ebook978-3-030-70067-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Extrinsic Geometry of Foliations影響因子(影響力)




書目名稱Extrinsic Geometry of Foliations影響因子(影響力)學(xué)科排名




書目名稱Extrinsic Geometry of Foliations網(wǎng)絡(luò)公開度




書目名稱Extrinsic Geometry of Foliations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Extrinsic Geometry of Foliations被引頻次




書目名稱Extrinsic Geometry of Foliations被引頻次學(xué)科排名




書目名稱Extrinsic Geometry of Foliations年度引用




書目名稱Extrinsic Geometry of Foliations年度引用學(xué)科排名




書目名稱Extrinsic Geometry of Foliations讀者反饋




書目名稱Extrinsic Geometry of Foliations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:38:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:14:16 | 只看該作者
Rosa Mu?oz-Luna,Lidia Tailleferture of a given foliation with respect to some Riemannian metric. The particular case of this quantity being identically zero (tautness) has been described separately. In the codimension-one case, the only obstructions for a scalar function to be the mean curvature of a foliation arise from Stokes’
地板
發(fā)表于 2025-3-22 07:29:17 | 只看該作者
https://doi.org/10.1007/978-94-009-2177-1ntal question (similar to the question on existence of canonical metrics on a manifold) reads as: .? Our goal here is to examine the actions on a manifold for different types of variations. Apart from varying among all metrics, we also deal with the case when the varying metric remains fixed along t
5#
發(fā)表于 2025-3-22 10:42:11 | 只看該作者
Vladimir Rovenski,Pawe? WalczakProblems of prescribing the extrinsic geometry and curvature of foliations are central to the book.Presents the state of the art in geometric and analytical theory of foliations.Designed for newcomers
6#
發(fā)表于 2025-3-22 15:49:50 | 只看該作者
7#
發(fā)表于 2025-3-22 18:34:05 | 只看該作者
8#
發(fā)表于 2025-3-22 23:04:00 | 只看該作者
Extrinsic Geometry of Foliations978-3-030-70067-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
9#
發(fā)表于 2025-3-23 03:42:36 | 只看該作者
https://doi.org/10.1007/978-3-030-96486-3By . we mean the evolution of a geometric structure on a manifold under a differential equation, usually associated with curvature. These correspond to dynamical systems in the infinite-dimensional space of all appropriate geometric structures on a given manifold.
10#
發(fā)表于 2025-3-23 08:10:14 | 只看該作者
Extrinsic Geometric Flows,By . we mean the evolution of a geometric structure on a manifold under a differential equation, usually associated with curvature. These correspond to dynamical systems in the infinite-dimensional space of all appropriate geometric structures on a given manifold.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金山区| 东源县| 蒲江县| 上林县| 竹山县| 木兰县| 紫阳县| 开化县| 衡水市| 维西| 河间市| 富顺县| 三河市| 丰城市| 小金县| 曲阳县| 珠海市| 玉田县| 资溪县| 淮滨县| 红原县| 新竹县| 双辽市| 婺源县| 樟树市| 来凤县| 马关县| 榕江县| 大关县| 敦化市| 安平县| 威信县| 南和县| 定州市| 乌海市| 望江县| 鹤壁市| 汨罗市| 揭西县| 禹城市| 清镇市|