找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extremal Combinatorics; With Applications in Stasys Jukna Textbook 20011st edition Springer-Verlag Berlin Heidelberg 2001 Diskrete Mathemat

[復(fù)制鏈接]
樓主: deep-sleep
21#
發(fā)表于 2025-3-25 04:55:51 | 只看該作者
Stasys JuknaProvides an introductory, self-contained and up-to-date source in extremal combinatorics suitable for a broad community: mathematicians, computer scientists, and engineers.Covers a substantial part of
22#
發(fā)表于 2025-3-25 09:53:18 | 只看該作者
23#
發(fā)表于 2025-3-25 14:23:15 | 只看該作者
Springer-Verlag Berlin Heidelberg 2001
24#
發(fā)表于 2025-3-25 19:43:42 | 只看該作者
25#
發(fā)表于 2025-3-25 20:20:26 | 只看該作者
Alexander Chursin,Yuri Vlasov,Yury Makarovimum) possible cardinality of a system of its subsets satisfying certain assumptions. To get a feeling about what kind of problems this book deals with, we list several typical examples. (Although long, the list is far from being exhaustive.) The number(s) in brackets indicate the section(s), where
26#
發(fā)表于 2025-3-26 03:41:05 | 只看該作者
https://doi.org/10.1007/978-981-99-2828-6he lectures are hold in parallel, in two different places and at the same time. Every club would like each of the lectures be visited by at least one of its members. Is it possible to arrange the attendance of inhabitants so that every club will know the contents of both lectures? This is a typical
27#
發(fā)表于 2025-3-26 06:14:57 | 只看該作者
https://doi.org/10.1007/978-3-7908-2076-8form family, some highly regular configurations, called “sunflowers,” must occur, regardless of the size of the universe. In this chapter we will consider this result as well as some of its modifications and applications.
28#
發(fā)表于 2025-3-26 08:45:12 | 只看該作者
SpringerBriefs in Digital Spacesamily reflects some kind of “dependence” between them. In this chapter we will study the weakest kind of this dependence — the members are required to be non-disjoint. A family is . if any two of its sets have a non-empty intersection.
29#
發(fā)表于 2025-3-26 15:14:26 | 只看該作者
30#
發(fā)表于 2025-3-26 18:25:12 | 只看該作者
https://doi.org/10.1007/978-3-658-35507-4In this section we give the notation that shall be standard throughout the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 22:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇安县| 布尔津县| 江阴市| 灌南县| 乌苏市| 黔西| 民和| 琼结县| 芦山县| 新巴尔虎右旗| 吴川市| 女性| 定结县| 绍兴县| 革吉县| 丽水市| 礼泉县| 梁山县| 宁强县| 桂林市| 垣曲县| 寿宁县| 陇西县| 拜泉县| 城口县| 游戏| 涪陵区| 乌拉特前旗| 绥化市| 兴海县| 金门县| 安乡县| 丹巴县| 宣武区| 枞阳县| 台前县| 获嘉县| 永川市| 偃师市| 郴州市| 连城县|