找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extrema of Smooth Functions; With Examples from E Mohamed Ali El-Hodiri Book 1991 Springer-Verlag Berlin · Heidelberg 1991 Calculus of Vari

[復(fù)制鏈接]
查看: 51970|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:23:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Extrema of Smooth Functions
副標(biāo)題With Examples from E
編輯Mohamed Ali El-Hodiri
視頻videohttp://file.papertrans.cn/321/320007/320007.mp4
圖書封面Titlebook: Extrema of Smooth Functions; With Examples from E Mohamed Ali El-Hodiri Book 1991 Springer-Verlag Berlin · Heidelberg 1991 Calculus of Vari
描述It is not an exaggeration to state that most problems dealt with in economic theory can be formulated as problems in optimization theory. This holds true for the paradigm of "behavioral" optimization in the pursuit of individual self interests and societally efficient resource allocation, as well as for equilibrium paradigms where existence and stability problems in dynamics can often be stated as "potential" problems in optimization. For this reason, books in mathematical economics and in mathematics for economists devote considerable attention to optimization theory. However, with very few exceptions, the reader who is interested in further study is left with the impression that there is no further place to go to and that what is in these second hand sources is all these is available as far as the subject of optimization theory is concerned. On the other hand the main results from mathematics are often carelessly stated or, more often than not, they do not get to be formally stated at all. Furthermore, it should be well understood that economic theory in general and, mathematical economics in particular, must be classified as special types of applied mathematics or, more precisel
出版日期Book 1991
關(guān)鍵詞Calculus of Variations; Infinitesimalrechnung; Optimierungstheorie; Variationsrechnung; control theory; e
版次1
doihttps://doi.org/10.1007/978-3-642-76793-7
isbn_softcover978-3-642-76795-1
isbn_ebook978-3-642-76793-7
copyrightSpringer-Verlag Berlin · Heidelberg 1991
The information of publication is updating

書目名稱Extrema of Smooth Functions影響因子(影響力)




書目名稱Extrema of Smooth Functions影響因子(影響力)學(xué)科排名




書目名稱Extrema of Smooth Functions網(wǎng)絡(luò)公開度




書目名稱Extrema of Smooth Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Extrema of Smooth Functions被引頻次




書目名稱Extrema of Smooth Functions被引頻次學(xué)科排名




書目名稱Extrema of Smooth Functions年度引用




書目名稱Extrema of Smooth Functions年度引用學(xué)科排名




書目名稱Extrema of Smooth Functions讀者反饋




書目名稱Extrema of Smooth Functions讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:14:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:58:03 | 只看該作者
地板
發(fā)表于 2025-3-22 05:58:59 | 只看該作者
5#
發(fā)表于 2025-3-22 09:40:55 | 只看該作者
Extensions and Applicationsze its solutions as applications of chapter 6. The optimal control problem with scalar criterion is presented in section 1. In section 2 we present extensions of the control problem to: a) problems with time lags, b) problems with bounded state variables and, c) problems with finite vector criteria.
6#
發(fā)表于 2025-3-22 16:06:41 | 只看該作者
https://doi.org/10.1007/978-3-319-00095-4cise presently. By the 1st order necessary condition of Chapter 1 we have: f?. + f?.ξ?′ = 0. But g(x1, ξ(x.)) is a constant function around x?.. Thus ?. + ?.ξ?′ = 0. Solving for ξ?′ we get: ξ?′ = -?./?..
7#
發(fā)表于 2025-3-22 20:10:08 | 只看該作者
Equality Constraintscise presently. By the 1st order necessary condition of Chapter 1 we have: f?. + f?.ξ?′ = 0. But g(x1, ξ(x.)) is a constant function around x?.. Thus ?. + ?.ξ?′ = 0. Solving for ξ?′ we get: ξ?′ = -?./?..
8#
發(fā)表于 2025-3-22 22:59:43 | 只看該作者
9#
發(fā)表于 2025-3-23 01:54:17 | 只看該作者
10#
發(fā)表于 2025-3-23 08:42:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
额济纳旗| 漯河市| 靖边县| 杭锦旗| 乐平市| 临颍县| 屏南县| 商都县| 韩城市| 沅陵县| 南阳市| 宁乡县| 阜平县| 界首市| 繁昌县| 重庆市| 马尔康县| 淄博市| 仙桃市| 永福县| 平陆县| 株洲市| 清镇市| 娄烦县| 青州市| 东明县| 漳州市| 宜昌市| 桐梓县| 象州县| 砚山县| 抚松县| 台州市| 开封县| 商城县| 武乡县| 邯郸市| 阳曲县| 临高县| 舟山市| 内江市|