找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exterior Differential Systems; Robert L. Bryant,S. S. Chern,P. A. Griffiths Book 1991 Springer-Verlag New York Inc. 1991 Canon.Lemma.Web.b

[復(fù)制鏈接]
樓主: Confer
11#
發(fā)表于 2025-3-23 10:21:38 | 只看該作者
0940-4740 r differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the sys
12#
發(fā)表于 2025-3-23 13:55:23 | 只看該作者
Elements of Geometric Crystallography,mber of examples of characteristic varieties, discuss some of their elementary properties, and shall state a number of remarkable theorems concerning characteristic varieties of involutive differential systems. The proofs of most of the results rely on certain commutative algebra properties of involutive tableaux and will be given in Chapter VIII.
13#
發(fā)表于 2025-3-23 20:14:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:32:42 | 只看該作者
,Cartan-K?hler Theory, integral manifolds of appropriate exterior differential systems. Moreover, in differential geometry, particularly in the theory and applications of the moving frame and Cartan’s method of equivalence, the problems to be studied often appear naturally in the form of an exterior differential system a
15#
發(fā)表于 2025-3-24 04:34:17 | 只看該作者
The Characteristic Variety,mportant a role in the theory of differential systems as that played by the usual characteristic variety in classical RD.E. theory. We shall give a number of examples of characteristic varieties, discuss some of their elementary properties, and shall state a number of remarkable theorems concerning
16#
發(fā)表于 2025-3-24 07:43:22 | 只看該作者
17#
發(fā)表于 2025-3-24 12:17:43 | 只看該作者
18#
發(fā)表于 2025-3-24 16:05:13 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:33 | 只看該作者
Partial Differential Equations,n-linear, as it has been developed over the last twenty five years. Rather than giving complete proofs, we have preferred in general to present many examples illustrating the various methods used in the theory.
20#
發(fā)表于 2025-3-25 00:50:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 08:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涿鹿县| 德兴市| 黑山县| 偏关县| 东海县| 农安县| 灵山县| 五寨县| 井陉县| 且末县| 长乐市| 扶风县| 高邑县| 炉霍县| 金华市| 昌黎县| 鹿邑县| 米易县| 湘乡市| 和林格尔县| 巴中市| 阳谷县| 三河市| 湛江市| 会昌县| 昌黎县| 滨海县| 钦州市| 犍为县| 苏尼特右旗| 尼木县| 景德镇市| SHOW| 永州市| 北宁市| 依兰县| 易门县| 临清市| 偃师市| 甘肃省| 镇江市|