找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exterior Differential Systems; Robert L. Bryant,S. S. Chern,P. A. Griffiths Book 1991 Springer-Verlag New York Inc. 1991 Canon.Lemma.Web.b

[復(fù)制鏈接]
樓主: Confer
11#
發(fā)表于 2025-3-23 10:21:38 | 只看該作者
0940-4740 r differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the sys
12#
發(fā)表于 2025-3-23 13:55:23 | 只看該作者
Elements of Geometric Crystallography,mber of examples of characteristic varieties, discuss some of their elementary properties, and shall state a number of remarkable theorems concerning characteristic varieties of involutive differential systems. The proofs of most of the results rely on certain commutative algebra properties of involutive tableaux and will be given in Chapter VIII.
13#
發(fā)表于 2025-3-23 20:14:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:32:42 | 只看該作者
,Cartan-K?hler Theory, integral manifolds of appropriate exterior differential systems. Moreover, in differential geometry, particularly in the theory and applications of the moving frame and Cartan’s method of equivalence, the problems to be studied often appear naturally in the form of an exterior differential system a
15#
發(fā)表于 2025-3-24 04:34:17 | 只看該作者
The Characteristic Variety,mportant a role in the theory of differential systems as that played by the usual characteristic variety in classical RD.E. theory. We shall give a number of examples of characteristic varieties, discuss some of their elementary properties, and shall state a number of remarkable theorems concerning
16#
發(fā)表于 2025-3-24 07:43:22 | 只看該作者
17#
發(fā)表于 2025-3-24 12:17:43 | 只看該作者
18#
發(fā)表于 2025-3-24 16:05:13 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:33 | 只看該作者
Partial Differential Equations,n-linear, as it has been developed over the last twenty five years. Rather than giving complete proofs, we have preferred in general to present many examples illustrating the various methods used in the theory.
20#
發(fā)表于 2025-3-25 00:50:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 12:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌恰县| 得荣县| 芦溪县| 宝鸡市| 四子王旗| 九江市| 天柱县| 应城市| 德江县| 南充市| 会昌县| 任丘市| 奈曼旗| 德钦县| 扬中市| 离岛区| 桐柏县| 齐齐哈尔市| 泸定县| 巴楚县| 土默特右旗| 贵溪市| 利川市| 呼和浩特市| 水城县| 科技| 高安市| 合肥市| 尤溪县| 陇川县| 文昌市| 丰原市| 九台市| 绵竹市| 修武县| 达孜县| 得荣县| 泗水县| 梁平县| 馆陶县| 那曲县|