找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts Spring 2014; Hamiltonian Systems Montserrat Corbera,Josep Maria Cors,Andrei Korobei Conference proceedings 2015 Springe

[復(fù)制鏈接]
樓主: 誤解
41#
發(fā)表于 2025-3-28 17:28:36 | 只看該作者
The Discrete Hamiltonian–Hopf Bifurcation for 4D Symplectic MapsWe consider a family of real-analytic symplectic four-dimensional maps ., ., . ≥ 1, with respect to the standard symplectic two-form ., where (.., .., .., ..) denote the Cartesian coordinates.
42#
發(fā)表于 2025-3-28 21:58:40 | 只看該作者
43#
發(fā)表于 2025-3-29 01:12:21 | 只看該作者
44#
發(fā)表于 2025-3-29 07:00:35 | 只看該作者
45#
發(fā)表于 2025-3-29 11:15:44 | 只看該作者
Frederick R. Maxfield,Darrell J. Yamashirohich are placed in the vertices of a regular polygon on . vertices. The primaries can be fixed or rotate with an uniform velocity around their center of mass. The first case is called the .-center problem, and the second the restricted (. + 1)-body problem. The last case has been studied in?[.], in this note we will mainly study the first one.
46#
發(fā)表于 2025-3-29 11:27:00 | 只看該作者
47#
發(fā)表于 2025-3-29 16:12:21 | 只看該作者
Bifurcations of the Spatial Central Configurations in the 5-Body Problem of the reasons why central configurations are interesting is that they allow us to obtain explicit homographic solutions of the .-body problem, that is, motions where the configuration of the system changes size but keeps its shape. Also, they are important in the study of total collisions.
48#
發(fā)表于 2025-3-29 21:59:26 | 只看該作者
49#
發(fā)表于 2025-3-30 01:31:55 | 只看該作者
Transport Dynamics: From the Bicircular to the Real Solar System Problemmation of the Solar System, a chain of independent Bicircular problems in order to get a first insight of transport in this simplified case. Each bicircular problem (BP) consists of the Sun (S), Jupiter (J), a planet and an infinitesimal mass.
50#
發(fā)表于 2025-3-30 05:07:26 | 只看該作者
978-3-319-22128-1Springer International Publishing Switzerland 2015
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
营口市| 含山县| 方正县| 九江市| 永昌县| 桐柏县| 花垣县| 宁陵县| 阿城市| 奇台县| 怀安县| 高碑店市| 左权县| 天水市| 施甸县| 太仓市| 龙胜| 桃源县| 喜德县| 康乐县| 湖北省| 丰宁| 郴州市| 两当县| 广州市| 思茅市| 穆棱市| 云霄县| 吉隆县| 历史| 启东市| 肥西县| 普定县| 新和县| 鄱阳县| 龙门县| 祁东县| 花垣县| 涟水县| 会昌县| 怀来县|