找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts MWCAPDE 2023; Methusalem Workshop Michael Ruzhansky,Berikbol Torebek Conference proceedings 2024 The Editor(s) (if appl

[復制鏈接]
樓主: 喜悅
21#
發(fā)表于 2025-3-25 06:56:53 | 只看該作者
Interpolation Theorem for Discrete Net SpacesIn this paper, we study the interpolation properties of the net spaces ., when . is the set of all segments from .. It is shown that in this case, the scale of spaces is closed with respect to the real interpolation method. As a corollary, an interpolation theorem of Marcinkevich type is presented.
22#
發(fā)表于 2025-3-25 08:32:49 | 只看該作者
23#
發(fā)表于 2025-3-25 13:28:52 | 只看該作者
The Mixed Initial-Boundary Value Problem for Degenerate Hyperbolic EquationA new class of initial-boundary value problems with nonlocal conditions on the Newton potential for the case of a degenerate equation were set and studied.
24#
發(fā)表于 2025-3-25 17:20:03 | 只看該作者
Vicky R. Breakey MD, MEd, FRCPC (Peds)his principal symbol is an element in the ring of virtual representations of the group, and, in particular instances, we show that it gives insights on the computation of spectral invariants linked to this type of operators.
25#
發(fā)表于 2025-3-25 22:55:16 | 只看該作者
26#
發(fā)表于 2025-3-26 02:02:11 | 只看該作者
27#
發(fā)表于 2025-3-26 06:44:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:19:23 | 只看該作者
https://doi.org/10.1007/978-1-0716-0247-8the ball .. We proceed from known results on the prolate spheroidal wave functions and on the Radon transform. The most interesting point of our numerical examples consists in super-resolution, that is, in recovering details beyond the diffraction limit, that is, details of size less than ., where .
29#
發(fā)表于 2025-3-26 15:44:49 | 只看該作者
30#
發(fā)表于 2025-3-26 18:29:07 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 07:19
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
米林县| 夏邑县| 榆树市| 绥棱县| 浦东新区| 云南省| 吴堡县| 上林县| 苏州市| 湄潭县| 潍坊市| 万荣县| 龙岩市| 泸定县| 六安市| 郯城县| 广平县| 平谷区| 博爱县| 黎平县| 宜宾市| 翁源县| 张家界市| 荥阳市| 建阳市| 永川市| 平江县| 河东区| 贵州省| 深圳市| 德庆县| 桑日县| 石城县| 墨竹工卡县| 开阳县| 江都市| 廉江市| 商水县| 会同县| 鄂尔多斯市| 临桂县|