找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts GEOMVAP 2019; Geometry, Topology, Maria Alberich-Carrami?ana,Guillem Blanco,Eva Mira Conference proceedings 2021 The Ed

[復(fù)制鏈接]
樓主: DUCT
41#
發(fā)表于 2025-3-28 17:34:08 | 只看該作者
https://doi.org/10.1007/978-3-030-84800-2Algebraic Varieties; Contact Manifolds; Control; Cosmology; Differentiable Manifolds; Geometric Quantizat
42#
發(fā)表于 2025-3-28 18:57:41 | 只看該作者
43#
發(fā)表于 2025-3-29 00:32:53 | 只看該作者
44#
發(fā)表于 2025-3-29 05:16:31 | 只看該作者
45#
發(fā)表于 2025-3-29 11:13:46 | 只看該作者
46#
發(fā)表于 2025-3-29 13:20:19 | 只看該作者
https://doi.org/10.1007/978-1-4684-6982-0tial geometry. Thinking about the geometric structures involved may lead to new interesting questions. We focus on Hamilton–Jacobi equation, which is in some regards equivalent to Hamilton’s equation. In particular, we will give an interpretation of Hamilton–Jacobi equation on a manifold in terms of
47#
發(fā)表于 2025-3-29 18:53:05 | 只看該作者
48#
發(fā)表于 2025-3-29 20:29:54 | 只看該作者
https://doi.org/10.1007/978-1-4615-8735-4ndition is an overdetermined PDE where the unknowns are the components of the metric. Using the methods of the theory of overdetermined PDE we can produce a lot of explicit examples, which seem to be new, of such manifolds. We will also make some observations about relationships of various condition
49#
發(fā)表于 2025-3-30 03:22:41 | 只看該作者
https://doi.org/10.1007/978-3-662-62751-8thesis, University of Michigan (2010), [.])) studied in their respective Ph.D. Thesis the relation between the jumping numbers of a unibranch plane curve and its topological type. In this paper we study if we can infer the topological type of a general plane curve from its associated jumping walls.
50#
發(fā)表于 2025-3-30 06:13:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 02:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定兴县| 大同县| 巩义市| 郎溪县| 大田县| 休宁县| 绍兴市| 合江县| 淳安县| 正宁县| 苏州市| 徐水县| 肇庆市| 金门县| 江华| 佛学| 临洮县| 沁水县| 喜德县| 孟州市| 大厂| 宁乡县| 凉城县| 达孜县| 星子县| 西和县| 泽州县| 印江| 沧源| 林甸县| 长宁县| 徐州市| 东平县| 长阳| 稻城县| 柏乡县| 呼伦贝尔市| 申扎县| 灌阳县| 富民县| 武川县|