找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts EuroComb 2021; European Conference Jaroslav Ne?et?il,Guillem Perarnau,Oriol Serra Conference proceedings 2021 The Edito

[復(fù)制鏈接]
樓主: 不友善
51#
發(fā)表于 2025-3-30 08:24:51 | 只看該作者
2297-0215 s in this conference.Collects the extended abstracts of the .This book collects the extended abstracts of the accepted contributions to EuroComb21. A similar book is published at every edition of EuroComb (every two years since 2001) collecting the most recent advances in combinatorics, graph theory
52#
發(fā)表于 2025-3-30 15:04:39 | 只看該作者
53#
發(fā)表于 2025-3-30 16:38:16 | 只看該作者
The True, the Good and the Beautiful,sibly depending on .). We first consider the case when . is a random geometric graph, and obtain an asymptotically optimal result. We then consider the case when . is a random regular graph, and obtain different results depending on the regularity.
54#
發(fā)表于 2025-3-30 21:20:08 | 只看該作者
55#
發(fā)表于 2025-3-31 01:58:51 | 只看該作者
56#
發(fā)表于 2025-3-31 08:32:50 | 只看該作者
https://doi.org/10.1007/978-3-476-99688-6f this result by presenting another construction . and showing that any .-vertex, connected, .-uniform hypergraph without a Berge-path of length ., that contains more than . hyperedges must be a subhypergraph of the extremal hypergraph ., provided . is large enough compared to ..
57#
發(fā)表于 2025-3-31 13:01:52 | 只看該作者
Some Results on the Laplacian Spectra of Token Graphs,. such that ., the Laplacian spectrum of . is contained in the Laplacian spectrum of .. Besides, we obtain a relationship between the spectra of the .-token graph of . and the .-token graph of its complement .. This generalizes a well-known property for Laplacian eigenvalues of graphs to token graphs.
58#
發(fā)表于 2025-3-31 15:34:54 | 只看該作者
59#
發(fā)表于 2025-3-31 20:26:12 | 只看該作者
Christian Korunka,Bettina Kubicek of pseudocircles. Furthermore, we construct an infinite family of 4-edge-critical 4-regular planar graphs which are fractionally 3-colorable. This disproves the conjecture of Gimbel, Kündgen, Li and Thomassen (2019) that every 4-chromatic planar graph has fractional chromatic number strictly greater than?3.
60#
發(fā)表于 2025-4-1 00:52:58 | 只看該作者
Coloring Circle Arrangements: New 4-Chromatic Planar Graphs, of pseudocircles. Furthermore, we construct an infinite family of 4-edge-critical 4-regular planar graphs which are fractionally 3-colorable. This disproves the conjecture of Gimbel, Kündgen, Li and Thomassen (2019) that every 4-chromatic planar graph has fractional chromatic number strictly greater than?3.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
韩城市| 东莞市| 呼玛县| 山西省| 个旧市| 攀枝花市| 逊克县| 孝义市| 水富县| 遂川县| 临漳县| 通海县| 松原市| 永登县| 徐汇区| 武义县| 梁平县| 潞城市| 民权县| 屏东市| 象山县| 老河口市| 平原县| 昂仁县| 天津市| 濉溪县| 淮滨县| 江孜县| 张掖市| 清徐县| 阿坝| 凉城县| 清流县| 临江市| 修水县| 平和县| 交口县| 华池县| 五家渠市| 宁武县| 肇东市|