找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts EuroComb 2021; European Conference Jaroslav Ne?et?il,Guillem Perarnau,Oriol Serra Conference proceedings 2021 The Edito

[復制鏈接]
樓主: 不友善
21#
發(fā)表于 2025-3-25 03:38:37 | 只看該作者
22#
發(fā)表于 2025-3-25 07:31:39 | 只看該作者
https://doi.org/10.1007/978-3-658-05438-0.. The key to the result is an inductive construction of a family of 13-crossing-critical graphs with many vertices of arbitrarily high degrees. While the inductive part of the construction is rather easy, it all relies on the fact that a certain 17-vertex base graph has the crossing number 13, whic
23#
發(fā)表于 2025-3-25 12:03:48 | 只看該作者
https://doi.org/10.1007/978-3-8349-6187-7lish a novel uniform infinite planar graph (UIPG) as quenched limit in the local topology as . tends to infinity. We also establish such limits for random 2-connected planar graphs and maps as their number of edges tends to infinity. Our approach encompasses a new probabilistic view on the Tutte dec
24#
發(fā)表于 2025-3-25 17:32:44 | 只看該作者
25#
發(fā)表于 2025-3-25 22:03:10 | 只看該作者
26#
發(fā)表于 2025-3-26 02:21:14 | 只看該作者
27#
發(fā)表于 2025-3-26 04:50:55 | 只看該作者
28#
發(fā)表于 2025-3-26 10:53:18 | 只看該作者
29#
發(fā)表于 2025-3-26 13:07:18 | 只看該作者
,Immergrüner Wandel – Ein Ausblick, that .. Recently, by relating this problem to a topological game, the authors, together with Bowler and Pitz, gave the current best known bound that .. Combining some of these ideas with some techniques introduced by Schr?der we improve this bound and show that ..
30#
發(fā)表于 2025-3-26 19:49:41 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 04:43
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
土默特右旗| 苍梧县| 随州市| 射阳县| 庄河市| 勃利县| 绿春县| 兰州市| 阿坝县| 农安县| 耿马| 墨玉县| 迁安市| 茂名市| 富平县| 陆河县| 汉阴县| 会同县| 旅游| 伊川县| 临汾市| 保山市| 北安市| 江阴市| 丹寨县| 舟山市| 隆子县| 五莲县| 琼结县| 华蓥市| 新河县| 桐乡市| 揭西县| 九寨沟县| 宿州市| 临汾市| 饶阳县| 青浦区| 清丰县| 林州市| 海宁市|