找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts 2021/2022; Methusalem Lectures Duván Cardona,Joel Restrepo,Michael Ruzhansky Conference proceedings 2024 The Editor(s) (

[復制鏈接]
樓主: 減輕
41#
發(fā)表于 2025-3-28 15:23:24 | 只看該作者
Ond?ej Císa?,Manès Weisskircherngular values, we obtain a two-radius theorem for integrals over sub-Riemannian geodesics. We also state intertwining properties of distinguished differential operators. We conclude with a description of ongoing work.
42#
發(fā)表于 2025-3-28 19:56:00 | 只看該作者
Julia Novak,Caitríona Ní Dhúillfor the eigenvalues of the Laplacians with Neumann and Dirichlet boundary conditions on bounded, simply connected planar domains. This principle can be used to provide simple proofs of some previously known results on the hot spots conjecture.
43#
發(fā)表于 2025-3-29 02:09:18 | 只看該作者
44#
發(fā)表于 2025-3-29 04:12:46 | 只看該作者
45#
發(fā)表于 2025-3-29 09:04:37 | 只看該作者
https://doi.org/10.1007/978-3-319-41015-9ns in .-limit when the thickness of the layer converges to zero. It is shown how the mixed type boundary value problem (BVP) for the bi-Laplace equation in the initial thin layer transforms in the .-limit into an appropriate Dirichlet BVP for the bi-Laplace-Beltrami equation on the surface. For this
46#
發(fā)表于 2025-3-29 13:10:12 | 只看該作者
47#
發(fā)表于 2025-3-29 18:27:27 | 只看該作者
Imagining Ireland‘s Future, 1870-1914aled Dirichlet energies, and use it to study the renormalized solution—the Almgren’s blowup. However, such monotonicity formulas require strong smoothness assumptions on domains and operators. We are interested in the cases when monotonicity formulas are not available, including variable coefficient
48#
發(fā)表于 2025-3-29 23:26:36 | 只看該作者
49#
發(fā)表于 2025-3-30 02:44:08 | 只看該作者
convergence of Vilenkin-Fourier series of . for . in case the Vilenkin system is bounded. Moreover, we state an analogy of the Kolmogorov theorem for . and construct a function . such that the partial sums with respect to Vilenkin systems diverge everywhere.
50#
發(fā)表于 2025-3-30 06:15:04 | 只看該作者
978-3-031-48581-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 03:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
伊川县| 金沙县| 泊头市| 原阳县| 福鼎市| 崇信县| 大荔县| 泾川县| 屏山县| 同江市| 嘉峪关市| 新津县| 白山市| 皮山县| 宜章县| 工布江达县| 波密县| 靖州| 南昌县| 阿合奇县| 兖州市| 长治市| 富民县| 定州市| 定安县| 小金县| 错那县| 渭源县| 巴彦县| 武汉市| 遂平县| 锦屏县| 旬邑县| 通海县| 旬阳县| 衡阳市| 钦州市| 龙陵县| 汝阳县| 丰城市| 济阳县|