找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts 2021/2022; Methusalem Lectures Duván Cardona,Joel Restrepo,Michael Ruzhansky Conference proceedings 2024 The Editor(s) (

[復(fù)制鏈接]
樓主: 減輕
41#
發(fā)表于 2025-3-28 15:23:24 | 只看該作者
Ond?ej Císa?,Manès Weisskircherngular values, we obtain a two-radius theorem for integrals over sub-Riemannian geodesics. We also state intertwining properties of distinguished differential operators. We conclude with a description of ongoing work.
42#
發(fā)表于 2025-3-28 19:56:00 | 只看該作者
Julia Novak,Caitríona Ní Dhúillfor the eigenvalues of the Laplacians with Neumann and Dirichlet boundary conditions on bounded, simply connected planar domains. This principle can be used to provide simple proofs of some previously known results on the hot spots conjecture.
43#
發(fā)表于 2025-3-29 02:09:18 | 只看該作者
44#
發(fā)表于 2025-3-29 04:12:46 | 只看該作者
45#
發(fā)表于 2025-3-29 09:04:37 | 只看該作者
https://doi.org/10.1007/978-3-319-41015-9ns in .-limit when the thickness of the layer converges to zero. It is shown how the mixed type boundary value problem (BVP) for the bi-Laplace equation in the initial thin layer transforms in the .-limit into an appropriate Dirichlet BVP for the bi-Laplace-Beltrami equation on the surface. For this
46#
發(fā)表于 2025-3-29 13:10:12 | 只看該作者
47#
發(fā)表于 2025-3-29 18:27:27 | 只看該作者
Imagining Ireland‘s Future, 1870-1914aled Dirichlet energies, and use it to study the renormalized solution—the Almgren’s blowup. However, such monotonicity formulas require strong smoothness assumptions on domains and operators. We are interested in the cases when monotonicity formulas are not available, including variable coefficient
48#
發(fā)表于 2025-3-29 23:26:36 | 只看該作者
49#
發(fā)表于 2025-3-30 02:44:08 | 只看該作者
convergence of Vilenkin-Fourier series of . for . in case the Vilenkin system is bounded. Moreover, we state an analogy of the Kolmogorov theorem for . and construct a function . such that the partial sums with respect to Vilenkin systems diverge everywhere.
50#
發(fā)表于 2025-3-30 06:15:04 | 只看該作者
978-3-031-48581-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 05:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英吉沙县| 阿克苏市| 吕梁市| 永州市| 惠安县| 荥阳市| 剑川县| 白朗县| 古丈县| 清水河县| 辛集市| 古浪县| 枣阳市| 鄂伦春自治旗| 商河县| 大兴区| 兰考县| 吴旗县| 芜湖县| 镇康县| 霍林郭勒市| 微博| 余江县| 宾川县| 兴义市| 航空| 罗源县| 会东县| 西藏| 安图县| 康定县| 囊谦县| 龙岩市| 唐河县| 龙里县| 呼玛县| 曲阜市| 古丈县| 德化县| 岢岚县| 通化县|