找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Expository Moments for Pseudo Distributions; Haruhiko Ogasawara Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: Eisenhower
11#
發(fā)表于 2025-3-23 12:06:13 | 只看該作者
2524-4027 PN without omitting proofs with didactic explanations using.This book provides expository derivations for moments of a family of pseudo distributions, which is an extended family of distributions including the pseudo normal (PN) distributions recently proposed by the author. The PN includes the ske
12#
發(fā)表于 2025-3-23 17:55:36 | 只看該作者
https://doi.org/10.1007/978-94-6300-456-5l. On the other hand, though the distribution of KN is symmetric, it is not necessarily normal. Moments and cumulants for some simple KN distributions with zero skewness by construction are obtained. Some limiting values of the moments, when the values of truncation/selection points approach 0 or infinity, are shown.
13#
發(fā)表于 2025-3-23 18:13:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:13:15 | 只看該作者
IgE Immunotherapy Against Cancer,en in Chap. .. Decompositions similar to the Henze theorem were derived using the moment generating functions giving the third proof of the Henze theorem. Results when the untruncated normal variables are added or reduced are shown. For associated results, forms of the multivariate Hermite polynomials are given.
15#
發(fā)表于 2025-3-24 03:57:25 | 只看該作者
16#
發(fā)表于 2025-3-24 09:38:08 | 只看該作者
17#
發(fā)表于 2025-3-24 14:04:00 | 只看該作者
18#
發(fā)表于 2025-3-24 15:41:41 | 只看該作者
https://doi.org/10.1007/978-3-030-37908-7ined using the weighted or incomplete Kummer confluent hypergeometric function given by Ogasawara [J Multivar Anal [.]) to have the absolute moments. The multivariate bpc distribution is also derived to obtain the absolute moments of the normal vector under sectional truncation, which is the multivariate version of stripe truncation.
19#
發(fā)表于 2025-3-24 19:11:00 | 只看該作者
20#
發(fā)表于 2025-3-24 23:54:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 04:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
社旗县| 唐海县| 宝兴县| 阜平县| 抚州市| 泗阳县| 张家港市| 张家口市| 寻甸| 方正县| 武安市| 禹州市| 黔南| 汉川市| 广平县| 喀什市| 宝丰县| 兴义市| 出国| 满城县| 丰原市| 建平县| 崇明县| 安丘市| 松滋市| 永顺县| 镇平县| 中阳县| 健康| 临海市| 含山县| 寿光市| 三河市| 亚东县| 衡阳县| 旬阳县| 桐梓县| 慈溪市| 兴宁市| 镇安县| 兴隆县|