找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exponentially Dichotomous Operators and Applications; Cornelis Mee Book 2008 Birkh?user Basel 2008 Banach space.Cauchy problem.Riccati equ

[復(fù)制鏈接]
樓主: 添加劑
11#
發(fā)表于 2025-3-23 13:32:16 | 只看該作者
12#
發(fā)表于 2025-3-23 13:54:58 | 只看該作者
0255-0156 ntary material: In this monograph the natural evolution operators of autonomous first-order differential equations with exponential dichotomy on an arbitrary Banach space are studied in detail. Characterizations of these so-called exponentially dichotomous operators in terms of their resolvents and
13#
發(fā)表于 2025-3-23 18:46:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:37:17 | 只看該作者
15#
發(fā)表于 2025-3-24 03:16:14 | 只看該作者
16#
發(fā)表于 2025-3-24 09:11:15 | 只看該作者
https://doi.org/10.1007/978-1-4899-7439-6and [?., 0]. As an initial condition we assume . to be known for .∈[?.]: . The special case studied most has the form . where ~.,…,.} is a subset of [?.] consisting of discrete shifts and .,…,. are complex . matrices. Here the measure matrix . is discrete. Equations (8.1) and (8.2) are called ., because .η(θ) does not depend on .∈[?.].
17#
發(fā)表于 2025-3-24 13:49:23 | 只看該作者
https://doi.org/10.1007/978-981-19-3167-3eparating projection of . and the bounded additive perturbation Γ is off-diagonal with respect to this decomposition, we convert the equivalent statements derived into an existence result for certain solutions of Riccati equations in £(.). We conclude this chapter with perturbation results on the solutions of these Riccati equations.
18#
發(fā)表于 2025-3-24 18:26:46 | 只看該作者
19#
發(fā)表于 2025-3-24 22:28:45 | 只看該作者
0255-0156 Hopf factorization and Riccati equations, transport equations, diffusion equations of indefinite Sturm-Liouville type, noncausal infinite-dimensional linear continuous-time systems, and functional differential equations of mixed type.978-3-7643-8732-7Series ISSN 0255-0156 Series E-ISSN 2296-4878
20#
發(fā)表于 2025-3-25 02:48:03 | 只看該作者
Birkh?user Basel 2008
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 05:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平阳县| 久治县| 武邑县| 博爱县| 奎屯市| 宿迁市| 岳阳县| 安溪县| 佛冈县| 通榆县| 阳泉市| 堆龙德庆县| 北安市| 元谋县| 福建省| 佛学| 景德镇市| 大丰市| 文山县| 昆山市| 泸水县| 石狮市| 张掖市| 赣榆县| 许昌市| 陆丰市| 长武县| 海林市| 绵竹市| 施甸县| 咸阳市| 仙桃市| 海原县| 公主岭市| 南川市| 民勤县| 迭部县| 葫芦岛市| 东城区| 雅安市| 胶南市|