找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explorations in Complex Functions; Richard Beals,Roderick S. C. Wong Textbook 2020 Springer Nature Switzerland AG 2020 Complex analysis te

[復(fù)制鏈接]
樓主: 出租
11#
發(fā)表于 2025-3-23 09:43:20 | 只看該作者
https://doi.org/10.1007/978-1-4899-0562-8This chapter relies heavily on Chapter ., with some reference to analytic continuation and conformal mapping, particularly Theorem ..
12#
發(fā)表于 2025-3-23 17:08:48 | 只看該作者
13#
發(fā)表于 2025-3-23 18:25:49 | 只看該作者
14#
發(fā)表于 2025-3-24 00:38:34 | 只看該作者
15#
發(fā)表于 2025-3-24 02:31:29 | 只看該作者
Riemann surfaces and algebraic curves,A Riemann surface can be thought as the domain of definition of a holomorphic function . that has been continued analytically as far as such continuations can be carried out. In general this is not a domain in the previous sense, i.e. a subset of the plane. Rather it is a complex manifold of one (complex) dimension that projects locally into ..
16#
發(fā)表于 2025-3-24 08:24:39 | 只看該作者
Entire functions,An entire function, a function that is defined and holomorphic in the entire plane ., can be analyzed in terms of its zeros and of its growth. Such an analysis has important applications.
17#
發(fā)表于 2025-3-24 11:35:26 | 只看該作者
18#
發(fā)表于 2025-3-24 15:13:29 | 只看該作者
The Riemann zeta function,As Euler noted, the fact that the series (.) diverges at . gives another proof that the set of primes is infinite—in fact . diverges. (This is only the simplest of the connections between properties of the zeta function and properties of primes.)
19#
發(fā)表于 2025-3-24 19:27:25 | 只看該作者
20#
發(fā)表于 2025-3-25 03:00:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
古田县| 谷城县| 古蔺县| 白水县| 肥城市| 韩城市| 噶尔县| 邵东县| 离岛区| 南岸区| 贡嘎县| 南通市| 获嘉县| 赤壁市| 辽源市| 莱芜市| 砚山县| 万全县| 泗洪县| 岳池县| 五寨县| 巴塘县| 沽源县| 慈利县| 遂川县| 宁夏| 博湖县| 葫芦岛市| 吉木萨尔县| 巴塘县| 揭东县| 洪洞县| 凉城县| 德阳市| 湖南省| 沐川县| 南靖县| 连州市| 宜兴市| 洪湖市| 金湖县|