找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics; Ulianov Montano Book 2014 Springer International Publishing Switzerl

[復(fù)制鏈接]
樓主: Sinuate
11#
發(fā)表于 2025-3-23 11:18:22 | 只看該作者
Synthesis of Materials Under High Pressure, in value, but also on changes in the constitution of our experience. The discussion also shows that the aesthetic as process theory is able to make predictions: the theory coherently predicts that computer-assisted proofs have little chance of being regarded as beautiful in the future.
12#
發(fā)表于 2025-3-23 16:46:37 | 只看該作者
Case Analysis III: Ugliness, Revisited in value, but also on changes in the constitution of our experience. The discussion also shows that the aesthetic as process theory is able to make predictions: the theory coherently predicts that computer-assisted proofs have little chance of being regarded as beautiful in the future.
13#
發(fā)表于 2025-3-23 18:12:07 | 只看該作者
14#
發(fā)表于 2025-3-24 00:08:07 | 只看該作者
Introduction to a Naturalistic Aesthetic Theorys that characteristically participate in aesthetic-processes. Aesthetic events should not be understood in isolation but as part of a process, of a system that unfolds by following different pathways over different times.
15#
發(fā)表于 2025-3-24 04:04:54 | 只看該作者
0166-6991 ory that accounts for aesthetic phenomena in mathematics.Dra.This book develops a naturalistic aesthetic theory that accounts for aesthetic phenomena in mathematics in the same terms as it accounts for more traditional aesthetic phenomena. Building upon a view advanced by James McAllister, the asser
16#
發(fā)表于 2025-3-24 07:17:21 | 只看該作者
https://doi.org/10.1007/978-3-031-48735-4shall be argued that the reasons for endorsing a non literal interpretation of mathematical beauty are rather weak. The discussion also examines the conceptions of mathematical beauty by Shaftesbury, Hutchenson and Gian-Carlo Rota.
17#
發(fā)表于 2025-3-24 11:27:55 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:48 | 只看該作者
Christoph Schwindt,Tobias Paetzount of beauty based merely on the passive contemplation of properties of objects is insufficient to account for mathematical items that involve the active use of our attention. Special emphasis is placed on the importance of mental contents and mental activities in mathematical beauty; the crucial notion of intentional object is thus introduced.
19#
發(fā)表于 2025-3-24 19:57:58 | 只看該作者
20#
發(fā)表于 2025-3-25 01:02:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巧家县| 万州区| 客服| 乌鲁木齐县| 井陉县| 靖边县| 铅山县| 吉安县| 丹江口市| 江城| 韶山市| 汉中市| 稻城县| 海丰县| 维西| 黄山市| 林甸县| 太仆寺旗| 屏山县| 突泉县| 安徽省| 昌乐县| 铜梁县| 新晃| 司法| 绥中县| 繁峙县| 高淳县| 霍州市| 望江县| 布尔津县| 五指山市| 原平市| 额济纳旗| 阿坝| 南陵县| SHOW| 云林县| 武邑县| 历史| 南充市|