找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Wojciech Samek,Grégoire Montavon,Klaus-Robert Müll Book 2019 Sprin

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:06:24 | 只看該作者
22#
發(fā)表于 2025-3-25 07:54:49 | 只看該作者
Explaining and Interpreting LSTMsque used for explaining the predictions of feed-forward networks to the LSTM architecture used for sequential data modeling and forecasting. The special accumulators and gated interactions present in the LSTM require both a new propagation scheme and an extension of the underlying theoretical framework to deliver faithful explanations.
23#
發(fā)表于 2025-3-25 11:44:53 | 只看該作者
24#
發(fā)表于 2025-3-25 17:32:58 | 只看該作者
0302-9743 urse and provides directions of future development.The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up hu
25#
發(fā)表于 2025-3-25 21:11:40 | 只看該作者
26#
發(fā)表于 2025-3-26 01:23:22 | 只看該作者
27#
發(fā)表于 2025-3-26 08:18:34 | 只看該作者
Michel Tenenhaus,Mohamed Hanafique used for explaining the predictions of feed-forward networks to the LSTM architecture used for sequential data modeling and forecasting. The special accumulators and gated interactions present in the LSTM require both a new propagation scheme and an extension of the underlying theoretical framework to deliver faithful explanations.
28#
發(fā)表于 2025-3-26 09:53:41 | 只看該作者
Cancer-Related Pain in Childhood,t computation and one based on a propagation mechanism. We evaluate them using three “axiomatic” properties: ., ., and .. These properties are tested on the overall explanation, but also at intermediate layers, where our analysis brings further insights on how the explanation is being formed.
29#
發(fā)表于 2025-3-26 12:39:17 | 只看該作者
Carol M. Trivette,Catherine P. Corrttribution methods and show how they share the same idea of using the gradient information as a descriptive factor for the functioning of a model. Finally, we discuss the strengths and limitations of these methods and compare them with available alternatives.
30#
發(fā)表于 2025-3-26 19:38:15 | 只看該作者
Gradient-Based Attribution Methodsttribution methods and show how they share the same idea of using the gradient information as a descriptive factor for the functioning of a model. Finally, we discuss the strengths and limitations of these methods and compare them with available alternatives.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大邑县| 栾城县| 万州区| 尉犁县| 盘锦市| 杭州市| 准格尔旗| 合作市| 石门县| 乌拉特后旗| 巴中市| 临城县| 宁南县| 正宁县| 虎林市| 阿克陶县| 儋州市| 页游| 垫江县| 泾阳县| 崇文区| 遂溪县| 敖汉旗| 饶平县| 称多县| 平定县| 库车县| 柳河县| 来安县| 嘉鱼县| 安龙县| 平昌县| 咸阳市| 轮台县| 昌宁县| 鹤峰县| 浏阳市| 安平县| 江城| 忻城县| 莱西市|