找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Expert Systems and Probabilistic Network Models; Enrique Castillo,José Manuel Gutiérrez,Ali S. Hadi Book 1997 Springer-Verlag New York, In

[復(fù)制鏈接]
樓主: 哪能仁慈
31#
發(fā)表于 2025-3-26 23:51:40 | 只看該作者
32#
發(fā)表于 2025-3-27 03:54:24 | 只看該作者
33#
發(fā)表于 2025-3-27 05:38:45 | 只看該作者
34#
發(fā)表于 2025-3-27 09:47:12 | 只看該作者
Grundlagen und Technologien des Ottomotors the relationships among them. We have also seen that all the information about the relationships among a set of variables is contained in the joint probability distribution (JPD) of the variables. Thus, the performance of a probabilistic expert system hinges on the correct specification of the JPD.
35#
發(fā)表于 2025-3-27 16:32:52 | 只看該作者
https://doi.org/10.1007/978-3-658-25064-5is represented by a joint probability distribution (JPD) of the set of variables of interest. The JPD is needed for the knowledge base of probabilistic expert systems. We have also seen in Chapter 3 that the most general JPD involves an infeasible large number of parameters. For this reason, simplif
36#
發(fā)表于 2025-3-27 19:34:31 | 只看該作者
37#
發(fā)表于 2025-3-28 01:53:09 | 只看該作者
38#
發(fā)表于 2025-3-28 06:05:26 | 只看該作者
Michael Fr?hlich,Jochen Mayerl,Andrea Pieters associated with these methods. On one hand, some of these algorithms are not generally applicable to all types of network structures. For example, the polytrees algorithm (Section 8.3) applies only to networks with simple polytree structure. On the other hand, general exact propagation methods tha
39#
發(fā)表于 2025-3-28 09:12:21 | 只看該作者
https://doi.org/10.1007/978-3-663-13346-9uire that the joint probability distribution (JPD) of the model be specified numerically, that is, all the parameters must be assigned fixed numeric values. However, numeric specification of these parameters may not be available, or it may happen that the subject-matter specialists can specify only
40#
發(fā)表于 2025-3-28 12:42:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 21:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
京山县| 洪雅县| 浦北县| 西峡县| 台州市| 阳江市| 宜州市| 滕州市| 万宁市| 东阿县| 芷江| 北碚区| 璧山县| 武城县| 衡南县| 湛江市| 民权县| 云阳县| 容城县| 兴山县| 牟定县| 辽阳县| 肇庆市| 宝兴县| 巴里| 安溪县| 静海县| 辰溪县| 沽源县| 吉水县| 偃师市| 邵阳市| 红安县| 东方市| 河池市| 凤山县| 高平市| 东平县| 峡江县| 长春市| 江源县|