找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Exercises in Group Theory; E. S. Lyapin,A. Ya. Aizenshtat,M. M. Lesokhin Book 1972 Plenum Press, New York 1972 Abelian group.Group represe

[復(fù)制鏈接]
樓主: breath-focus
21#
發(fā)表于 2025-3-25 04:28:54 | 只看該作者
978-1-4613-4591-6Plenum Press, New York 1972
22#
發(fā)表于 2025-3-25 08:43:02 | 只看該作者
23#
發(fā)表于 2025-3-25 14:23:37 | 只看該作者
https://doi.org/10.1007/978-1-4613-4589-3Abelian group; Group representation; Group theory; Multiplication; addition; algebra; automorphism; finite
24#
發(fā)表于 2025-3-25 17:09:08 | 只看該作者
Blas Cabrera,H. Gutfreund,Vladimir Kresiner or not this object has the given property. We can then consider the collection of all objects having this property as a new mathematical object, which is called a .. The objects are called . of the given set.
25#
發(fā)表于 2025-3-25 23:01:54 | 只看該作者
26#
發(fā)表于 2025-3-26 03:32:49 | 只看該作者
https://doi.org/10.1007/978-3-642-54171-1alled a . of . in the class .. The set α (.) is called the image of the representation. If . consists of one multiplicative set ., we say that α is a representation of . in . instead of saying “a representation of . in the class consisting of the one set ..” If α is an isomorphism, the representatio
27#
發(fā)表于 2025-3-26 04:47:13 | 只看該作者
28#
發(fā)表于 2025-3-26 09:00:15 | 只看該作者
29#
發(fā)表于 2025-3-26 12:44:38 | 只看該作者
Group Representations,alled a . of . in the class .. The set α (.) is called the image of the representation. If . consists of one multiplicative set ., we say that α is a representation of . in . instead of saying “a representation of . in the class consisting of the one set ..” If α is an isomorphism, the representatio
30#
發(fā)表于 2025-3-26 20:20:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹阳市| 肥东县| 唐河县| 松阳县| 济南市| 常州市| 固安县| 略阳县| 黔西县| 武冈市| 佛坪县| 芦溪县| 吉木萨尔县| 廉江市| 文登市| 丽水市| 湟中县| 玛曲县| 浦县| 湛江市| 从化市| 融水| 太和县| 娄烦县| 武隆县| 富民县| 且末县| 齐齐哈尔市| 巍山| 大悟县| 南充市| 山阳县| 阳原县| 曲沃县| 吴江市| 怀柔区| 壶关县| 永康市| 灌南县| 福海县| 吴堡县|