找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Excursions into Combinatorial Geometry; Vladimir Boltyanski,Horst Martini,Petru S. Soltan Textbook 1997 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: Forbidding
21#
發(fā)表于 2025-3-25 05:38:38 | 只看該作者
22#
發(fā)表于 2025-3-25 11:21:50 | 只看該作者
23#
發(fā)表于 2025-3-25 13:03:57 | 只看該作者
Homothetic covering and illumination,e problems are equivalent for compact, convex bodies, whereas they differ from each other in the unbounded case. Among these four problems, the central one is the question for the minimal number of smaller homothets of a convex body . ? R. which are sufficient to cover.. In addition, the problem of
24#
發(fā)表于 2025-3-25 18:21:35 | 只看該作者
Combinatorial geometry of belt bodies, the class of zonoids. (For zonoids and their fascinating properties, the reader is referred to the surveys [S-W], [G-W], [Bk 1], and [Mar 4].) Moreover, the class of belt bodies is dense in the family of all compact, convex bodies. Nevertheless, solutions of combinatorial problems for zonoids [Ba 1
25#
發(fā)表于 2025-3-25 21:52:28 | 只看該作者
26#
發(fā)表于 2025-3-26 02:00:17 | 只看該作者
https://doi.org/10.1007/978-94-009-3867-0Borsuk considered this question for two-dimensional sets and for the n-dimensional ball . ? R.. One motivation for these investigations was given by the famous theorem of Borsuk and Ulam, referring to continuous mappings of the .-sphere into R..
27#
發(fā)表于 2025-3-26 07:43:57 | 只看該作者
28#
發(fā)表于 2025-3-26 11:54:18 | 只看該作者
The Short-Time Fourier Transform,n . such that .(.,.) =∥ . ? . ∥ for any ., . ∈ .. Finally, we say that a metric . is . if the set . = { . ∈ . : .(., .) ≤ 1 { is bounded in . . The problem is to describe a condition under which a metric . in . is normable.
29#
發(fā)表于 2025-3-26 16:38:08 | 只看該作者
,Borsuk’s partition problem,Borsuk considered this question for two-dimensional sets and for the n-dimensional ball . ? R.. One motivation for these investigations was given by the famous theorem of Borsuk and Ulam, referring to continuous mappings of the .-sphere into R..
30#
發(fā)表于 2025-3-26 19:19:17 | 只看該作者
Combinatorial geometry of belt bodies,er, the class of belt bodies is dense in the family of all compact, convex bodies. Nevertheless, solutions of combinatorial problems for zonoids [Ba 1, Ba 2, Mar 2, B-SP 5, B-SP 6] can be extended to belt bodies. The aim of this chapter is the explanation of combinatorial properties of belt bodies, cf. also [B-M 1].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南投市| 利津县| 巴林左旗| 盐山县| 灵石县| 阜阳市| 偃师市| 得荣县| 新郑市| 三都| 云阳县| 南和县| 米脂县| 固镇县| 桐城市| 二连浩特市| 邹城市| 万全县| 离岛区| 宾阳县| 芷江| 长沙县| 西安市| 中超| 太湖县| 全州县| 天柱县| 连山| 廊坊市| 久治县| 宁安市| 灵台县| 双峰县| 额济纳旗| 科技| 黎川县| 建水县| 南宫市| 韶关市| 汶川县| 庄浪县|