找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Excursions in Harmonic Analysis, Volume 6; In Honor of John Ben Matthew Hirn,Shidong Li,?zgür Yilmaz Book 2021 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Ejaculation
11#
發(fā)表于 2025-3-23 12:13:38 | 只看該作者
https://doi.org/10.1007/978-3-030-69637-5John Benedetto harmonic analysis; Harmonic analysis and applications; Banach-Zaretsky theorem; Spectral
12#
發(fā)表于 2025-3-23 14:27:21 | 只看該作者
Foundations of Finitely Supported Structurespping harmonic potential, assuming that the initial data is radially symmetric in the weighted Sobolev space. The nonlinearity is in the mass supercritical and energy subcritical regime. Numerical simulations are also presented.
13#
發(fā)表于 2025-3-23 20:52:57 | 只看該作者
Brice Colombier,Lilian Bossuet,David Hélyn Benedetto’s 80th Birthday in the University of Maryland, September 19–21, 2019. We discuss different aspects of the completeness property of translates in . and in more general Banach function spaces. In particular, we describe a wide class of Banach spaces that can be generated by uniformly discrete translates of a single function.
14#
發(fā)表于 2025-3-24 01:23:14 | 只看該作者
Yael Pritch,Moshe Ben-Ezra,Shmuel Pelegr which the local reconstruction properties of such a system extend to global stable recovery properties on the whole space. As a particular case, we obtain new local-to-global results for systems of type . arising in the dynamical sampling problem.
15#
發(fā)表于 2025-3-24 06:12:34 | 只看該作者
Universal Upper Bound on the Blowup Rate of Nonlinear Schr?dinger Equation with Rotationpping harmonic potential, assuming that the initial data is radially symmetric in the weighted Sobolev space. The nonlinearity is in the mass supercritical and energy subcritical regime. Numerical simulations are also presented.
16#
發(fā)表于 2025-3-24 09:24:39 | 只看該作者
Discrete Translates in Function Spacesn Benedetto’s 80th Birthday in the University of Maryland, September 19–21, 2019. We discuss different aspects of the completeness property of translates in . and in more general Banach function spaces. In particular, we describe a wide class of Banach spaces that can be generated by uniformly discrete translates of a single function.
17#
發(fā)表于 2025-3-24 13:39:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:34:48 | 只看該作者
Matthew Hirn,Shidong Li,?zgür YilmazCelebrates John J. Benedetto’s lasting impact on harmonic analysis and its applications.Covers a wide range of topics related to this field, illustrating the breadth of influence that Benedetto has ha
19#
發(fā)表于 2025-3-24 22:04:54 | 只看該作者
20#
發(fā)表于 2025-3-25 00:28:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石林| 郑州市| 石首市| 普格县| 化德县| 蛟河市| 贵溪市| 丹寨县| 洛扎县| 五莲县| 大城县| 兴文县| 德格县| 民丰县| 卢龙县| 六盘水市| 上栗县| 天峨县| 黑山县| 响水县| 江安县| 会昌县| 桐城市| 晋宁县| 莱西市| 苍南县| 盐池县| 平利县| 永丰县| 汾阳市| 新龙县| 桃园县| 陇南市| 雅安市| 墨江| 乌海市| 乐业县| 武强县| 顺平县| 阿拉善右旗| 新巴尔虎左旗|