找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Excursions in Harmonic Analysis, Volume 3; The February Fourier Radu Balan,Matthew J. Begué,Kasso A. Okoudjou Book 2015 Springer Internatio

[復(fù)制鏈接]
樓主: adulation
41#
發(fā)表于 2025-3-28 15:22:54 | 只看該作者
42#
發(fā)表于 2025-3-28 22:05:46 | 只看該作者
43#
發(fā)表于 2025-3-28 23:40:00 | 只看該作者
Ian Dempsey,Michael O’Neill,Anthony Brabazonuid particle trajectories and this measurement is used to identify Lagrangian coherent structures in the flow. Results for both idealized and realistic ocean flows are compared and contrasted with other methods for identifying coherent structures. Other possible applications for the technique are also discussed.
44#
發(fā)表于 2025-3-29 04:47:03 | 只看該作者
Test-Driven Development and Impostors,ates of a finite number of functions in terms of properties of the associated Gramian matrix. In some cases, the results are not a straightforward generalization of the case when a single function is considered.
45#
發(fā)表于 2025-3-29 08:19:24 | 只看該作者
Foundations of Atmospheric Remote Sensingnd zero magnitude at . points. The design takes place in Zak space. The use of Zak space setting enables selection of a desirable Fourier transform zero placement, reduces computations, and links the Golay sequence design with the design of perfect sequences.
46#
發(fā)表于 2025-3-29 13:08:11 | 只看該作者
47#
發(fā)表于 2025-3-29 18:25:35 | 只看該作者
Hodge-de Rham Theory of K-Forms on Carpet Type FractalsC we observe a Poincare type duality between the Laplacian on 0-forms and 2-forms. On the other hand, on SC the Laplacian on 2-forms appears to be an operator with continuous (as opposed to discrete) spectrum. 2010 . Primary: 28A80
48#
發(fā)表于 2025-3-29 21:25:43 | 只看該作者
49#
發(fā)表于 2025-3-30 02:31:56 | 只看該作者
50#
發(fā)表于 2025-3-30 05:02:52 | 只看該作者
Theories of Aversive Control of Behavior, properties in the time–frequency plane. Advanced time–frequency signal processing techniques are then applied for estimating antigenic determinants or epitope candidates for detecting and identifying potential pathogens.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渭南市| 布尔津县| 仙游县| 玉林市| 丹凤县| 平凉市| 泸溪县| 伊春市| 拉萨市| 高邑县| 阿鲁科尔沁旗| 盈江县| 松滋市| 绥江县| 吴桥县| 卫辉市| 巴中市| 奇台县| 阿拉善左旗| 武陟县| 邵武市| 南木林县| 泰宁县| 新乡县| 青神县| 墨脱县| 曲沃县| 靖宇县| 苍南县| 双江| 栾城县| 承德市| 阜新市| 鹤岗市| 富裕县| 如东县| 鸡东县| 四子王旗| 南陵县| 潜山县| 太原市|