找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems; Tatsien Li,Ke Wang,Qilong Gu Book 2016 The Author(s) 2

[復制鏈接]
樓主: advocate
11#
發(fā)表于 2025-3-23 11:10:43 | 只看該作者
Semi-global Piecewise Classical Solutions on a Tree-Like Network,In this chapter, semi-global classical solutions on a single interval will be generalized to semi-global piecewise classical solutions on a tree-like network.
12#
發(fā)表于 2025-3-23 14:28:39 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D First Order Quasilinear Hyperbolic Systems,A complete theory on the local exact boundary controllability for 1-D quasilinear hyperbolic systems has been established in [11, 12, 16–18].
13#
發(fā)表于 2025-3-23 18:38:19 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations on a Planar TreeIn this Chapter, we will generalize the exact boundary controllability of nodal profile for 1-D quasilinear wave equations in a single string, discussed in Chap.?., to that on a planar tree-like network of strings with general topology (see Wang and Gu [22]. For the corresponding result on the exact boundary controllability, cf. Gu and Li [6]).
14#
發(fā)表于 2025-3-23 22:11:39 | 只看該作者
Hui Wang,David Bell,Fionn Murtaghspatial interval, discussed in Chap.?., to that on a tree-like network. A general framework can be established for general 1-D first order quasilinear hyperbolic systems with general nonlinear boundary conditions and general nonlinear interface conditions, provided that there are full of boundary co
15#
發(fā)表于 2025-3-24 04:32:13 | 只看該作者
Latent Semantic Feature Extraction,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
16#
發(fā)表于 2025-3-24 08:01:21 | 只看該作者
Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems978-981-10-2842-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
17#
發(fā)表于 2025-3-24 13:06:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:42:16 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
19#
發(fā)表于 2025-3-24 20:53:43 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:07 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 22:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
金昌市| 浦北县| 泰来县| 蒙城县| 资溪县| 克什克腾旗| 社旗县| 威远县| 石景山区| 汕尾市| 舞钢市| 台北县| 五指山市| 新蔡县| 梓潼县| 巴青县| 兴化市| 安塞县| 伊金霍洛旗| 长寿区| 汕尾市| 柏乡县| 兰考县| 巴彦县| 定南县| 阳江市| 会东县| 大冶市| 桂林市| 运城市| 墨脱县| 东港市| 韶关市| 胶州市| 稻城县| 永济市| 平山县| 商水县| 远安县| 商城县| 龙胜|