找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Multi-Criterion Optimization; Third International Carlos A. Coello Coello,Arturo Hernández Aguirre,E Conference proceedings 2

[復制鏈接]
樓主: 偏差
51#
發(fā)表于 2025-3-30 10:02:57 | 只看該作者
52#
發(fā)表于 2025-3-30 16:13:29 | 只看該作者
Recombination of Similar Parents in EMO Algorithms flowshop scheduling problems using the NSGA-II algorithm. We focus on the relation between the performance of the NSGA-II algorithm and the similarity of recombined parent solutions. First we show the necessity of crossover operations through computational experiments with various specifications of
53#
發(fā)表于 2025-3-30 19:08:55 | 只看該作者
https://doi.org/10.1007/978-94-017-8709-3imed at improving the speed of convergence beyond a parallel island MOEA with migration. We also suggest a clustering based parallelization scheme for MOEAs and compare it to several alternative MOEA parallelization schemes on multiple standard multi-objective test functions.
54#
發(fā)表于 2025-3-30 22:13:32 | 只看該作者
55#
發(fā)表于 2025-3-31 02:34:57 | 只看該作者
A realistic role for experiment of the Pareto set. Then, we present an original hybridization with Path Relinking algorithm, in order to intensify the search between solutions obtained by the first approach. Results obtained are promising and show that cooperation between these optimization methods could be efficient for Pareto optimization.
56#
發(fā)表于 2025-3-31 07:53:40 | 只看該作者
G. Rossi,G. Madrussani,A. L. Vesnaverg initial populations into existing MOEAs based on so-called Pareto-Front-Arithmetics (PFA). We will provide experimental results from the field of embedded system synthesis that show the effectiveness of our proposed methodology.
57#
發(fā)表于 2025-3-31 12:30:58 | 只看該作者
58#
發(fā)表于 2025-3-31 17:22:58 | 只看該作者
59#
發(fā)表于 2025-3-31 20:45:53 | 只看該作者
An Efficient Multi-objective Evolutionary Algorithm: OMOEA-IIrove the performance in robusticity without degrading precision and distribution of solutions. Experimental results show that OMOEA-II can solve problems with high dimensions and large number of local Pareto-optimal fronts better than some existing algorithms recently reported in the literatures.
60#
發(fā)表于 2025-3-31 22:40:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 01:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
遂溪县| 固镇县| 大方县| 五大连池市| 郑州市| 卢湾区| 尼木县| 南阳市| 福海县| 德江县| 巴林左旗| 印江| 揭阳市| 秀山| 衡山县| 石景山区| 化州市| 丹寨县| 宣化县| 遵义县| 井陉县| 淳安县| 临邑县| 达州市| 迭部县| 体育| 武邑县| 博爱县| 贞丰县| 聂拉木县| 静海县| 壶关县| 深水埗区| 霍山县| 上犹县| 南靖县| 泰宁县| 虎林市| 福清市| 永康市| 金坛市|