找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Learning: Advances in Theories and Algorithms; Zhi-Hua Zhou,Yang Yu,Chao Qian Book 2019 Springer Nature Singapore Pte Ltd. 20

[復(fù)制鏈接]
查看: 41340|回復(fù): 54
樓主
發(fā)表于 2025-3-21 17:24:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms
編輯Zhi-Hua Zhou,Yang Yu,Chao Qian
視頻videohttp://file.papertrans.cn/318/317970/317970.mp4
概述Presents theoretical results for evolutionary learning.Provides general theoretical tools for analysing evolutionary algorithms.Proposes evolutionary learning algorithms with provable theoretical guar
圖書(shū)封面Titlebook: Evolutionary Learning: Advances in Theories and Algorithms;  Zhi-Hua Zhou,Yang Yu,Chao Qian Book 2019 Springer Nature Singapore Pte Ltd. 20
描述.Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches.? ??.Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary opt
出版日期Book 2019
關(guān)鍵詞Artificial intelligence; Machine Learning; Evolutionary Learning; Evolutionary Algorithms; Evolutionary
版次1
doihttps://doi.org/10.1007/978-981-13-5956-9
isbn_ebook978-981-13-5956-9
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms影響因子(影響力)




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms影響因子(影響力)學(xué)科排名




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms被引頻次




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms被引頻次學(xué)科排名




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms年度引用




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms年度引用學(xué)科排名




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms讀者反饋




書(shū)目名稱Evolutionary Learning: Advances in Theories and Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:44 | 只看該作者
Existence: Semantics and Syntaxhe original constrained optimization problem into a bi-objective optimization problem, is probably better than the commonly employed penalty method and the greedy method. Its effectiveness is moreover verified in machine learning tasks.
板凳
發(fā)表于 2025-3-22 03:58:59 | 只看該作者
地板
發(fā)表于 2025-3-22 05:52:30 | 只看該作者
Constrained Optimizationhe original constrained optimization problem into a bi-objective optimization problem, is probably better than the commonly employed penalty method and the greedy method. Its effectiveness is moreover verified in machine learning tasks.
5#
發(fā)表于 2025-3-22 12:45:42 | 只看該作者
6#
發(fā)表于 2025-3-22 15:45:19 | 只看該作者
7#
發(fā)表于 2025-3-22 20:45:09 | 只看該作者
8#
發(fā)表于 2025-3-22 23:00:49 | 只看該作者
9#
發(fā)表于 2025-3-23 03:25:26 | 只看該作者
10#
發(fā)表于 2025-3-23 08:47:39 | 只看該作者
https://doi.org/10.1007/978-94-007-4207-9helpful, while for easy problems, it can be harmful. The findings are verified in the experiments. We also prove that the two common strategies, i.e., threshold selection and sampling, can bring robustness against noise when it is harmful.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万源市| 彭水| 定西市| 固安县| 通河县| 类乌齐县| 瑞金市| 陆河县| 翁牛特旗| 双辽市| 江山市| 临漳县| 疏附县| 即墨市| 斗六市| 纳雍县| 辽宁省| 德昌县| 赤城县| 句容市| 阿尔山市| 南丰县| 镇雄县| 长岛县| 子长县| 峨山| 荆州市| 和静县| 德令哈市| 遵义县| 黄浦区| 永宁县| 漠河县| 龙陵县| 高尔夫| 罗山县| 葵青区| 松阳县| 开封县| 乐安县| 当阳市|