找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Artificial Intelligence; Proceedings of ICEAI David Asirvatham,Francisco M. Gonzalez-Longatt,R. Conference proceedings 2024 T

[復(fù)制鏈接]
樓主: Impacted
31#
發(fā)表于 2025-3-26 22:19:02 | 只看該作者
Managing Operations in Chaotic Environments with Evolutionary Software Agents,dynamics, handling chemical and technological processes, generating signals in radio engineering, and managing assets in capital markets. The challenge lies in the limited predictability of deterministic chaos models, which results in additional uncertainty arising from random observations, as expla
32#
發(fā)表于 2025-3-27 03:54:53 | 只看該作者
33#
發(fā)表于 2025-3-27 07:33:22 | 只看該作者
,Enhanced Brain Tumor Classification with?Inception V3 and?Xception Dual-Channel CNN,According to the scientific community, a brain tumor is an unusual growth in brain cells, some of which may develop into cancer. Manually diagnosing the severity of brain tumors is not only a challenge but also error-prone. To mitigate the issues with manual diagnosis, deep learning can be proposed
34#
發(fā)表于 2025-3-27 09:46:27 | 只看該作者
Segmentation of Multiple Sclerosis Using Autoencoder and Classifier,cal dysfunction. Accurately identifying the degree of damage to the brain matter is critical for prognosis. Progression of MS must be closely monitored requiring regular assessment of symptoms through diagnostic methods like magnetic resonance imaging (MRI). This process is quite taxing and time-con
35#
發(fā)表于 2025-3-27 16:55:33 | 只看該作者
36#
發(fā)表于 2025-3-27 19:27:55 | 只看該作者
37#
發(fā)表于 2025-3-27 23:47:50 | 只看該作者
38#
發(fā)表于 2025-3-28 03:24:30 | 只看該作者
A More Effective Ensemble ML Method for Detecting Breast Cancer,come the world’s most common trigger of death by 2020, having been identified among 7.8 million women over the 5?years preceding that. ML algorithms are being used extensively in the medical field to forecast certain diseases sooner. A breast cancer dataset obtained from Kaggle is used in this study
39#
發(fā)表于 2025-3-28 09:52:30 | 只看該作者
Identification of Plant Leaf Disease Using Synthetic Data Augmentation ProGAN to Improve the Perfor of several years. Existing approaches still face challenges in achieving high accuracy and generalization. One key limitation lies in the requisite for a significant amount of labeled data to properly train deep learning models. Moreover, imbalanced and limited datasets often lead to poor predictio
40#
發(fā)表于 2025-3-28 10:58:38 | 只看該作者
,A Comparative Study of?Machine Learning Algorithms for?Enhanced Credit Default Prediction,This research study presents a comparative analysis of various machine learning algorithms, which are used for forecasting the likelihood of credit default. Six diverse algorithms—Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), Logistic Regression, Decision Tree (DT), Gaussian Naive Bayes,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 07:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武宁县| 长沙市| 宣武区| 玛纳斯县| 邢台县| 泸西县| 南充市| 济宁市| 昌乐县| 青神县| 图们市| 班玛县| 连江县| 屯门区| 郸城县| 安西县| 苍南县| 忻城县| 石景山区| 江口县| 甘孜| 山东省| 依兰县| 浦县| 沙坪坝区| 明溪县| 博白县| 桓台县| 隆回县| 寿光市| 瓦房店市| 通城县| 都昌县| 万荣县| 福安市| 内乡县| 牟定县| 井研县| 襄城县| 东阳市| 赣榆县|