找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution of Biological Systems in Random Media: Limit Theorems and Stability; Anatoly Swishchuk,Jianhong Wu Book 2003 Springer Science+Bu

[復(fù)制鏈接]
樓主: digestive-tract
11#
發(fā)表于 2025-3-23 09:50:45 | 只看該作者
12#
發(fā)表于 2025-3-23 17:15:10 | 只看該作者
Enzymes and Signal Amplification Systems between successive generations and so population growth is in discrete steps. For primitive organisms, these discrete steps can be quite short, and hence a continuous (in time) model may be a reasonable approximation. Here, we consider both discrete and continuous logistic growth model (LGM).
13#
發(fā)表于 2025-3-23 21:06:42 | 只看該作者
Logistic Growth Models, between successive generations and so population growth is in discrete steps. For primitive organisms, these discrete steps can be quite short, and hence a continuous (in time) model may be a reasonable approximation. Here, we consider both discrete and continuous logistic growth model (LGM).
14#
發(fā)表于 2025-3-24 01:22:31 | 只看該作者
15#
發(fā)表于 2025-3-24 04:56:48 | 只看該作者
16#
發(fā)表于 2025-3-24 07:54:15 | 只看該作者
https://doi.org/10.1007/978-3-642-67234-7Another point of view can be taken toward the Fisher-Wright model, considered in Section 4.1.2.B. This approach is in the spirit of .
17#
發(fā)表于 2025-3-24 12:20:46 | 只看該作者
18#
發(fā)表于 2025-3-24 17:06:21 | 只看該作者
Random Media,This chapter is devoted to the description of random environment, in the form of a Markov chain, a Markov renewal or a semi-Markov process, and its ergodic and martingale properties. We introduce the notions of diffusion processes, semigroups and their generators, and consider the merging property of random environment.
19#
發(fā)表于 2025-3-24 20:00:24 | 只看該作者
Epidemic Models,In this Chapter, we study .. We start with deterministic models and then concentrated on their stochastic analogue (in random media), and consider limit theorems and stochastic stability in averaging and diffusion approximation schemes.
20#
發(fā)表于 2025-3-25 00:27:04 | 只看該作者
Branching Models,Another point of view can be taken toward the Fisher-Wright model, considered in Section 4.1.2.B. This approach is in the spirit of .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开平市| 西峡县| 家居| 诸暨市| 眉山市| 黄陵县| 扬中市| 永修县| 聂拉木县| 五莲县| 凉城县| 建瓯市| 光泽县| 寻乌县| 碌曲县| 河津市| 香河县| 台南市| 普定县| 青龙| 通渭县| 茂名市| 桦川县| 阳泉市| 江西省| 金华市| 菏泽市| 句容市| 资阳市| 新巴尔虎右旗| 鄂尔多斯市| 沙坪坝区| 东阿县| 伊川县| 中宁县| 同德县| 大石桥市| 铜陵市| 建水县| 神农架林区| 宝丰县|