找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution Processes and the Feynman-Kac Formula; Brian Jefferies Book 1996 Springer Science+Business Media Dordrecht 1996 Feynman-Kac form

[復(fù)制鏈接]
樓主: EXTRA
11#
發(fā)表于 2025-3-23 10:19:20 | 只看該作者
12#
發(fā)表于 2025-3-23 15:30:26 | 只看該作者
Feynman-Kac Formulae,igroup of continuous linear operators acting on . and that .: . → .(.) is a spectral measure, so that . is a .-additive (.)-process. Recall that this means that for each . ≥ 0, ..: .. → ?(.) is a .-additive set function defined on a .-algebra .. of subsets of Ω containing the collection ..{.} of all
13#
發(fā)表于 2025-3-23 19:05:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:48:52 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:37 | 只看該作者
Some Bounded Evolution Processes,y with transition functions for probabilistic Markov processes. In practice, it is simpler to work with semigroups of linear operators directly, but for the purpose of making the exposition more complete, the technique is outlined in Sections 1 and 2.
16#
發(fā)表于 2025-3-24 08:26:48 | 只看該作者
17#
發(fā)表于 2025-3-24 14:26:55 | 只看該作者
The Radial Dirac Process,l operators .., . = ±1, ±2,..., acting on ..((0, ∞); ?.). The first order part of .. looks similar to the generator of the direct sum of translations in each component of . ∈ ..((0, ∞); ?.). The part of order zero has a 1/.-singularity at . = 0.
18#
發(fā)表于 2025-3-24 14:55:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:00:16 | 只看該作者
Sebastian Robert,Achim Hendriks measured by a collection of operator valued set functions that may or may not be .-additive. Typically, the set functions are constructed from a semigroup representing the undisturbed evolution of a system, and a spectral measure by which perturbations are implemented.
20#
發(fā)表于 2025-3-25 01:44:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 16:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙城区| 南澳县| 贵州省| 安国市| 南汇区| 宜川县| 湾仔区| 徐闻县| 略阳县| 洛隆县| 苍梧县| 新宁县| 昌都县| 水城县| 克山县| 长垣县| 莱西市| 外汇| 西充县| 武隆县| 德州市| 潞城市| 长岭县| 梁河县| 大新县| 双鸭山市| 金川县| 扶余县| 梧州市| 黎川县| 松桃| 当涂县| 宾阳县| 郧西县| 陇西县| 阿瓦提县| 中牟县| 甘孜| 旅游| 民县| 高州市|