找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolution Equations in Scales of Banach Spaces; Oliver Caps Textbook 2002 B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden 2002 Application

[復制鏈接]
樓主: Monroe
11#
發(fā)表于 2025-3-23 12:20:22 | 只看該作者
12#
發(fā)表于 2025-3-23 16:40:35 | 只看該作者
Entrepreneurship and Innovation,e of Banach spaces (.). (i.e., . for . ∈ ?. is a Banach space with . ? . for . ≥ .). Here well-posedness roughly means that for sufficiently smooth initial values . there are unique solutions depending continuously on ..
13#
發(fā)表于 2025-3-23 18:51:42 | 只看該作者
International Studies in Entrepreneurship spaces, where .(.) resp., .(., .) are linear operators. Although semilinear evolution equations are special cases of quasilinear ones, we will start this chapter with a discussion of semilinear evolution equations in scales of Banach spaces in section 3.1. We do this for two reasons. On the one han
14#
發(fā)表于 2025-3-24 01:44:06 | 只看該作者
https://doi.org/10.1007/978-3-322-80039-8Applications to quasilinear evolution equations; Quasilinear evolution equations; Tools from functiona
15#
發(fā)表于 2025-3-24 03:37:03 | 只看該作者
16#
發(fā)表于 2025-3-24 09:07:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:33:03 | 只看該作者
https://doi.org/10.1007/978-0-387-72857-5The purpose of this section is to provide briefly some results on .-semigroup theory that we will need in later sections. We assume the reader to be familiar with elementary functional analysis of bounded, linear operators in Banach spaces.
18#
發(fā)表于 2025-3-24 18:02:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:16:54 | 只看該作者
Ramo Palali?,Léo-Paul‘Dana,Veland RamadaniThe fifth and last chapter is devoted to applications to quasilinear differential and pseudodifferential evolution equations. In section 5.1 we prove several inequalities that are based on Gagliardo-Moser-Nirenberg estimates, i.e., estimates like
20#
發(fā)表于 2025-3-25 02:18:23 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
即墨市| 沙田区| 思南县| 镇江市| 文水县| 衡阳县| 自贡市| 克什克腾旗| 交口县| 扶绥县| 昌邑市| 达孜县| 寿宁县| 新宾| 南雄市| 海伦市| 广安市| 东至县| 长宁县| 温宿县| 井冈山市| 岫岩| 博客| 庆安县| 平原县| 塘沽区| 青田县| 邵阳县| 叙永县| 江安县| 蓝田县| 镇沅| 凤城市| 孟津县| 浪卡子县| 枞阳县| 泊头市| 乡宁县| 盱眙县| 芦山县| 噶尔县|