找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Evo-SETI; Life Evolution Stati Claudio Maccone Book 2020 Springer Nature Switzerland AG 2020 Search for Extraterrestrial Intelligence.Peak-

[復(fù)制鏈接]
查看: 19167|回復(fù): 69
樓主
發(fā)表于 2025-3-21 16:24:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evo-SETI
副標(biāo)題Life Evolution Stati
編輯Claudio Maccone
視頻videohttp://file.papertrans.cn/318/317629/317629.mp4
概述Offers a vision of how evolutionary processes of life can be modeled mathematically.Describes the full evolution of life on Earth from RNA to modern human societies.Predicts when computers will take o
圖書封面Titlebook: Evo-SETI; Life Evolution Stati Claudio Maccone Book 2020 Springer Nature Switzerland AG 2020 Search for Extraterrestrial Intelligence.Peak-
描述.This book offers a vision of how evolutionary life processes can be modelled. It presents a mathematical description that can be used not only for the full evolution of life on Earth from RNA to modern human societies, but also the possible evolution of life on exoplanets, thus leading to SETI, the current Search for ExtraTerrestrial Intelligence.?? .The main premise underlying this mathematical theory is that the Geometric Brownian Motion (GBM) can be applied as a key stochastic process to model the evolution of life. In the resulting Evo-SETI Theory, the life of any living thing (a cell, an animal, a human, a civilization of humans, or even an ET civilization) is represented by a b-lognormal, i.e., a lognormal probability density function starting at a precise instant (b, birth) then increasing up to a peak time, then decreasing to senility time and then continuing as a straight line down to the time of death..Using this theory, Claudio Maccone arrivesat remarkable hypotheses on the development of life and civilizations, the possibility of extraterrestrial life, and when computers will take over the reins from us humans (Singularity). The book develops the mathematical Evo-SETI
出版日期Book 2020
關(guān)鍵詞Search for Extraterrestrial Intelligence; Peak-Locus Theorem; Evolutional Entropy; Markov-Korotayev; mol
版次1
doihttps://doi.org/10.1007/978-3-030-51931-5
isbn_softcover978-3-030-51933-9
isbn_ebook978-3-030-51931-5
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Evo-SETI影響因子(影響力)




書目名稱Evo-SETI影響因子(影響力)學(xué)科排名




書目名稱Evo-SETI網(wǎng)絡(luò)公開(kāi)度




書目名稱Evo-SETI網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Evo-SETI被引頻次




書目名稱Evo-SETI被引頻次學(xué)科排名




書目名稱Evo-SETI年度引用




書目名稱Evo-SETI年度引用學(xué)科排名




書目名稱Evo-SETI讀者反饋




書目名稱Evo-SETI讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:03:36 | 只看該作者
SpringerBriefs in Quantitative Financeost important mathematical?Theorems making up for our Evo-SETI Theory. If newcomers to Evo-SETI are “scared” by this large amount of mathematics, they may SKIP this Chapter “Evo-SETI Mathematics: Part 1: Entropy of Information. Part 2: Energy of Living Forms. Part 3: The Singularity”?in the first in
板凳
發(fā)表于 2025-3-22 03:39:10 | 只看該作者
地板
發(fā)表于 2025-3-22 06:47:57 | 只看該作者
5#
發(fā)表于 2025-3-22 10:32:45 | 只看該作者
6#
發(fā)表于 2025-3-22 14:13:43 | 只看該作者
7#
發(fā)表于 2025-3-22 20:58:05 | 只看該作者
8#
發(fā)表于 2025-3-22 21:48:10 | 只看該作者
9#
發(fā)表于 2025-3-23 04:40:23 | 只看該作者
10#
發(fā)表于 2025-3-23 07:43:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岚皋县| 白城市| 兴仁县| 衡水市| 淄博市| 邵阳县| 芒康县| 呼玛县| 元氏县| 东莞市| 鄢陵县| 永宁县| 巴中市| 潜山县| 旺苍县| 伊春市| 璧山县| 鱼台县| 怀仁县| 赫章县| 南开区| 常德市| 独山县| 出国| 罗源县| 司法| 阜宁县| 卢氏县| 武胜县| 青川县| 将乐县| 孝义市| 雅江县| 麻栗坡县| 宿迁市| 平武县| 安塞县| 台北县| 宁夏| 弥渡县| 施甸县|