找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Event Attendance Prediction in Social Networks; Xiaomei Zhang,Guohong Cao Book 2021 The Author(s), under exclusive license to Springer Nat

[復制鏈接]
樓主: DEIFY
11#
發(fā)表于 2025-3-23 12:17:05 | 只看該作者
12#
發(fā)表于 2025-3-23 15:19:50 | 只看該作者
SpringerBriefs in Statisticshttp://image.papertrans.cn/e/image/317407.jpg
13#
發(fā)表于 2025-3-23 20:06:36 | 只看該作者
https://doi.org/10.1007/978-3-319-00783-0attendance, which has three research challenges, i.e., dataset collection, extraction of appropriate attributes, and identifying suitable learning methods. We first explain these challenges and then describe how to address them with a context-aware data mining approach. In this approach, three sets
14#
發(fā)表于 2025-3-24 00:13:27 | 只看該作者
Astrophysics and Space Science Librarytion, the initial discussion centers around this topic. Existing works on short-term mobility prediction and long-term mobility prediction are reviewed. Then, we survey related work on event-based social networks, with focuses on recommendation systems and event attendance prediction.
15#
發(fā)表于 2025-3-24 05:54:42 | 只看該作者
16#
發(fā)表于 2025-3-24 06:58:53 | 只看該作者
17#
發(fā)表于 2025-3-24 14:04:36 | 只看該作者
https://doi.org/10.1007/978-3-7091-0900-7e. This process is also referred to as supervised binary classification, considering that ‘attend or not’ is a binary classification. There are many supervised classifiers in the literature, and we adopt three classifiers, including logistic regression, decision tree and na?ve Bayes. In this chapter
18#
發(fā)表于 2025-3-24 16:25:19 | 只看該作者
Group IV materials (mainly SiC),of the proposed solutions and evaluate how different parameters affect the performances. In this chapter, we first discuss the data selection, the experiment setting, and then present the evaluation results on the effectiveness of individual attributes and the performance of the three classifiers.
19#
發(fā)表于 2025-3-24 22:49:20 | 只看該作者
https://doi.org/10.1007/0-306-46940-5ng approach to solve it. Experimental results based on the collected dataset demonstrated that the proposed approach can predict event attendance with high accuracy. Finally, we point out future research directions.
20#
發(fā)表于 2025-3-25 01:42:32 | 只看該作者
Astrophysics and Space Science Librarytion, the initial discussion centers around this topic. Existing works on short-term mobility prediction and long-term mobility prediction are reviewed. Then, we survey related work on event-based social networks, with focuses on recommendation systems and event attendance prediction.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阳山县| 汾阳市| 通江县| 高碑店市| 邢台市| 台安县| 邯郸市| 依兰县| 夹江县| 威远县| 祁东县| 同心县| 德格县| 安泽县| 广西| 安龙县| 射阳县| 鄯善县| 井冈山市| 东港市| 淳安县| 会泽县| 杭锦旗| 安仁县| 疏勒县| 六安市| 田东县| 治多县| 灵石县| 晋江市| 广饶县| 信阳市| 渝北区| 措勤县| 乐山市| 高密市| 灵璧县| 新昌县| 大石桥市| 和平县| 潞西市|