找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Shortest Paths; Exact or Approximate Fajie Li,Reinhard Klette Book 2011 Springer-Verlag London Limited 2011 Art Gallery Problems.

[復(fù)制鏈接]
樓主: 瘦削
11#
發(fā)表于 2025-3-23 10:15:38 | 只看該作者
Paths on Surfaces or .=2, where .. is the length of a shortest path, ... the length of the initial path, .. the length of a restricted shortest path, and ... the length of an initial path for the restricted path calculation. Both proposed RBAs are easy to implement. Applications are, for example, in 3D object analysis in biomedical or industrial imaging.
12#
發(fā)表于 2025-3-23 16:05:44 | 只看該作者
Safari and Zookeeper Problemsting ZRP with . runtime, where . is the number of vertices of all polygons involved, and . the number of the “cages”. Extensions of the algorithms presented can solve more general SRPs and ZRPs if each convex polygon is replaced by a convex region such as convex polybeziers (beziergons) or ellipses.
13#
發(fā)表于 2025-3-23 21:31:10 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:31 | 只看該作者
Haemostatic Disorders in Diabetes Mellitus,s never implemented; the chapter provides a brief presentation and discussion of this algorithm. This is followed by a novel procedural presentation of Mitchell’s continuous Dijkstra algorithm for subdividing the plane into a shortest-path map for supporting queries about distances to a fixed start point in the presence of polygonal obstacles.
15#
發(fā)表于 2025-3-24 04:54:56 | 只看該作者
16#
發(fā)表于 2025-3-24 07:24:22 | 只看該作者
https://doi.org/10.1007/978-981-10-4376-5 available polygonal regions. This chapter explains a few exact algorithms in this area which run typically in linear or (.log.)-time with respect to a given input parameter .. However, the problems could also be solved approximately by rubberband algorithms.
17#
發(fā)表于 2025-3-24 11:21:42 | 只看該作者
Haemostatic Disorders in Diabetes Mellitus, down-stable vertices). Chazelle’s algorithm, published in 1991 and claimed to be of linear time, is often cited as a reference, but this algorithm was never implemented; the chapter provides a brief presentation and discussion of this algorithm. This is followed by a novel procedural presentation o
18#
發(fā)表于 2025-3-24 16:01:29 | 只看該作者
Matthew T. Crow,Erica N. Johnsonin .. It uses triangulation of simple polygons as presented in the previous chapter as a preprocessing step, and has a time complexity that is determined by that of the prior triangulation..This chapter provides two rubberband algorithms for computing a shortest path between . and . that is containe
19#
發(fā)表于 2025-3-24 21:51:44 | 只看該作者
20#
發(fā)表于 2025-3-24 23:13:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄢陵县| 达孜县| 平定县| 如东县| 灵石县| 常熟市| 孟连| 丰城市| 长海县| 怀远县| 囊谦县| 英山县| 尤溪县| 隆德县| 南乐县| 保定市| 广平县| 柳州市| 成安县| 盘山县| 广宁县| 东港市| 定结县| 新干县| 旬阳县| 乌拉特后旗| 南安市| 诸城市| 含山县| 蒙山县| 德保县| 扬州市| 蓬溪县| 乃东县| 澜沧| 梅河口市| 江源县| 台北市| 迁西县| 五常市| 新平|